Log in

Label-Free Determination of Atrazine Using a Novel Electrochemical Aptasensor Based on Multiwalled Carbon Nanotube/Graphene Oxide Nanocomposite and Chitosan

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The present paper describes a novel and simple aptamer-based strategy for label-free determination of atrazine (ATZ) in solutions using a glassy carbon electrode (GCE) modified with chitosan (CS) and a nanocomposite film composed of multiwalled carbon nanotubes (f-MWCNs) and graphene oxides (GO). The chitosan and nanocomposite film provide the appropriate sites for the better attachment of aptamer owing to the presence of amino and carboxyl functional groups. In order to increase the specificity of the proposed sensor, the NH2-terminal aptamer was immobilized at the surface of f-MWCNTs-GO/CS nanocomposite through the formation of chemical bonds between the amino groups of the aptamer and functional groups of the nanocomposite by using the gluteraldehyde (GLA) as a cross-linker. Various electrochemical techniques such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) were utilized to characterize the changes of the surface of the modified electrode in each step. In the presence of atrazine, the aptamer molecules selectively combine with the target molecules at the electrode surface which results in a decrease in the current intensity of DPV and CV electrochemical signals. Under the optimized experimental conditions, the presented aptasensor revealed a wide linear range of 1 to 250 nM with a low detection limit of 0.06 nM. In addition, the practical application of the fabricated aptasensor for the measurement of the low concentration of atrazine was tested in real samples, and the satisfactory results were obtained.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

No datasets were generated or analysed during the current study.

References

  1. V.K. Gupta, M.L. Yola, T. Eren, N. Atar, Selective QCM sensor based on ATZ imprinted polymer: its application to wastewater sample. Sens. Actuators B Chem. 218, 215–221 (2015)

    Article  CAS  Google Scholar 

  2. N. Belkhamssa, C.I.L. Justino, P.S.M. Santos, S. Cardoso, I. Lopes, A.C. Duarte, T. Rocha-Santos, M. Ksibi, Label-free disposable immunosensor for detection of ATZ. Talanta 146, 430–434 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. Z.M. Yu, G.H. Zhao, M.C. Liu, Y.Z. Lei, M.F. Li, Fabrication of a novel atrazine biosensor and its subpart-per-trillion levels sensitive performance. Environ. Sci. Technol. 44, 7878–7883 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. K.E. Hyer, G.M. Hornberger, J.S. Herman, Processes controlling the episodic streamwater transport of atrazine and other agrichemicals in an agricultural watershed. J. Hydrol. 254, 47–66 (2001)

    Article  CAS  Google Scholar 

  5. J.P. Lasserre, F. Fack, T. Serchi, D. Revets, S. Planchon, J. Renaut, L. Hoffmann, A.C. Gutleb, C.P. Muller, T. Bohn, Atrazine and PCB 153 and their effects on the proteome of subcellular fractions of human MCF-7 cells. BBA-Proteins Proteom. 2012, 833–841 (1824)

    Google Scholar 

  6. E. Beceiro-Gonzalez, M.J. Gonzalez-Castro, R. Pouso-Blanco, S. Muniategui- Lorenzo, P. Lopez-Mahia, D. Prada-Rodriguez, A simple method for simultaneous determination of nine triazines in drinking water. Green Chem. Lett. Rev. 7, 271–277 (2014)

    Article  CAS  Google Scholar 

  7. C. Stalikas, D. Knopp, R. Niessner, Sol-gel glass immunosorhent-based determination of s-triazines in water and soil samples using gas chromatography with a nitrogen phosphorus detection system. Environ. Sci. Technol. 36, 3372–3377 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. B.D. Real, M.C. Ortiz, L.A. Sarabia, Develop of a multiway chemometric-based analytical method fulfilling regulatory identification criteria: application to GC-MS pesticide residue analysis. J. Chromatogr. B 910, 122–137 (2012)

    Article  CAS  Google Scholar 

  9. G. Zhao, S.J. Song, C. Wang, Q. Wu, Z. Wang, Determination of atriazine herbicides in environmental water samples by high-performance liquid chromatography using graphene-coated magnetic nanoparticles as adsorbent. Anal. Chim. Acta 708, 155–159 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. P.K. Behniwal, J.W. She, Development of HPLC-MS/MS method for the simultaneous determination of metabolites of organophosphate pesticides, synthetic pyrethroids, herbicides and DEET in human urine. Int. J. Environ. Anal. Chem. 9, 548–562 (2017)

    Article  Google Scholar 

  11. M. Baspinar, C. Demir, Multicomponent determination of pesticides in mineral water by gas chromatography-mass spectrometry. Asian J. Chem. 21, 1931–1942 (2009)

    CAS  Google Scholar 

  12. D. Williams, G. Bradley, M.J. George, L. Marjanovic, Rapid detection of atrazine and metolachlor in farm soils: gas chromatography-mass spectrometry-based analysis using the bubble-in-drop single drop microextraction enrichment method. J. Agric. Food Chem. 62, 7676–7681 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. E. Pardieu, H. Cheap, C. Vedrine, M. Lazerges, Y. Lattach, F. Garnier, S. Ramita, C. Pernelle, Molecularly imprinted conducting polymer based electrochemical sensor for detection of atrazine. Anal. Chim. Acta 649, 236–245 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. A. Gonzalez-Techera, M.A. Zon, P.G. Molina, H. Fernandez, G. Gonzalez-Sapienza, F.J. Arevalo, Development of a highly sensitive noncompetitive electrochemical immunosensor for the detection of atrazine by phage anti-immunocomplex assay. Biosens. Bioelectron. 64, 650–656 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. Y. Wang, H. Sun, M. Liu, H. Lu, G. Zhao, A novel self-powered aptasensor for environmental pollutants detection based on simple and efficient enzymatic biofuel cell. Sens. Actuators B Chem. 305, 127468 (2020)

    Article  CAS  Google Scholar 

  16. H. Li, J. Li, Y. Qiao, H. Fang, D. Fan, W. Wang, Nano-gold plasmon coupled with dual-function quercetin for enhanced photoelectrochemical aptasensor of tetracycline. Sens. Actuators B Chem. 243, 1027–1033 (2017)

    Article  CAS  Google Scholar 

  17. S. Liu, X. **ng, J. Yu, W. Lian, J. Li, M. Cui, J. Huang, A novel label-free electrochemical aptasensor based on graphene–polyaniline composite film for dopamine determination. Biosens. Bioelectron. 36, 186–191 (2012)

    Article  PubMed  Google Scholar 

  18. N. Kaur, A. Bharti, S. Batra, S. Rana, S. Rana, A. Bhalla, N. Prabhakar, An electrochemical aptasensor based on graphene doped chitosan nanocomposites for determination of ochratoxin A. Microchem. J. 144, 102–109 (2019)

    Article  CAS  Google Scholar 

  19. X. Wang, F. Gao, Y. Gong, G. Liu, Y. Zhang, C. Ding, Electrochemical aptasensor based on conductive supramolecular polymer hydrogels for thrombin detection with high selectivity. Talanta 205, 120140–120145 (2019)

    Article  CAS  PubMed  Google Scholar 

  20. H. Zejlia, K.Y. Goudb, J.L. Martyc, An electrochemical aptasensor based on polythiophene-3-carboxylic acid assisted methylene blue for aflatoxin B1 detection. Sens. Bio-Sens. Res. 25, 100290–100295 (2019)

    Article  Google Scholar 

  21. B. Rezaei, H.R. Jamei, A.A. Ensafi, An ultrasensitive and selective electrochemical aptasensor based on rGO-MWCNTs/chitosan/carbon quantum dot for the detection of lysozyme. Biosens. Bioelectron. 115, 37–44 (2018)

    Article  CAS  PubMed  Google Scholar 

  22. B. Deiminiat, G.H. Rounaghi, M.H. Arbab-Zavar, I. Razavipanah, A novel electrochemical aptasensor based on f-MWCNTs/AuNPs nanocomposite for label-free detection of bisphenol A. Sens. Actuators B 242, 158–166 (2017)

    Article  CAS  Google Scholar 

  23. X. Sun, F. Li, G. Shen, J. Huang, X. Wang, Aptasensor based on the synergistic contributions of chitosan–gold nanoparticles, graphene–gold nanoparticles and multi-walled carbon nanotubes-cobalt phthalocyanine nanocomposites for kanamycin detection. Analyst 139, 299–308 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. F. Nasiri, G.H. Rounaghi, N. Ashraf, B. Deiminiat, A new electrochemical sensing platform for quantitative determination of diclofenac based on gold nanoparticles decorated multiwalled carbon nanotubes/graphene oxide nanocomposite film. Inter. J. Environ Anal. Chem. 101, 153–166 (2021)

    Article  CAS  Google Scholar 

  25. S. Cheemalapati, S. Palanisamy, V. Mani, S.M. Chen, Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode. Talanta 117, 297–304 (2013)

    Article  CAS  PubMed  Google Scholar 

  26. S. Singal, A.K. Srivastava, S. Dhakate, A.M. Biradara, Electroactive graphene-multi-walled carbon nanotube hybrid supported impedimetric immunosensor for the detection of human cardiac troponin-I. RSC Adv. 5, 74994–75003 (2015)

    Article  CAS  Google Scholar 

  27. M. Hosseini Ghalehno, M. Mirzaei, M. Torkzadeh-Mahani, Electrochemical aptasensor for activated protein C using a gold nanoparticle – chitosan/graphene paste modified carbon paste electrode. Bioelectrochem. 130, 107322 (2019)

    Article  CAS  Google Scholar 

  28. B. Deiminiat, G.H. Rounaghi, M.H. Arbab-Zavar, Development of a new electrochemical imprinted sensor based on poly-pyrrole, sol–gel and multiwall carbon nanotubes for determination of tramadol. Sens. Actuators B Chem. 238, 651–659 (2017)

    Article  CAS  Google Scholar 

  29. K.I. Ozoemena, N.S. Mathebula, J. Pillay, G. Toschi, J.A. Verschoor, Electron transfer dynamics across self-assembled N-(2-mercaptoethyl) octadecanamide/mycolic acid layers: impedimetric insights into the structural integrity and interaction with anti-mycolic acid antibodies. Phys. Chem. Chem. Phys. 12(2), 345–357 (2010)

    Article  CAS  PubMed  Google Scholar 

  30. S. Khezrian, A. Salimi, H. Teymourian, R. Hallaj, Label-free electrochemical IgE aptasensor based on covalent attachment of aptamer onto multiwalled carbon nanotubes/ionic liquid/chitosan nanocomposite modified electrode. Biosens. Bioelectron. 43, 218–225 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. X. Liu, W.J. Li, L. Li, Y. Yang, L.G. Mao, Z. Peng, A label-free electrochemical immunosensor based on gold nanoparticles for direct detection of atrazine. Sens. Actuators B Chem. 191, 408–414 (2014)

    Article  CAS  Google Scholar 

  32. C. Zhang, S. Si, Z. Yang, Design of molecularly imprinted TiO2/carbon aero-gel electrode for the photoelectrochemical determination of atrazine. Sens. Actuators B Chem. 211, 206–212 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

The authors wish to acknowledge the financial support of this research work by Ferdowsi University of Mashhad, Mashhad, Iran (Grant No. 3.43194).

Author information

Authors and Affiliations

Authors

Contributions

Muhaned Mohammed Eteya: investigation, writing—original draft, and formal analysis. Gholam Hossein Rounaghi: validation, writing—review and editing, supervision, and funding acquisition. Behjat Deiminiat: validation, writing—review and editing, and formal analysis.

Corresponding author

Correspondence to Gholam Hossein Rounaghi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eteya, M.M., Rounaghi, G.H. & Deiminiat, B. Label-Free Determination of Atrazine Using a Novel Electrochemical Aptasensor Based on Multiwalled Carbon Nanotube/Graphene Oxide Nanocomposite and Chitosan. Electrocatalysis (2024). https://doi.org/10.1007/s12678-024-00882-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12678-024-00882-x

Keywords

Navigation