Log in

Chemometric Investigation of Platinum Electrodeposition on Titanium Substrates for Ethanol Electro-oxidation

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The objective of this work is to employ chemometric tools to investigate the influence of the synthesis parameters in platinum electrodeposition on a titanium substrate using cyclic voltammetry. Through a 22 factorial design, using as response the maximum peak current density during the ethanol electro-oxidation, one can observe that the number of cycles and the scan rate are both significant, but the interaction between them is not. The maximum peak current density is observed for the electrode obtained with NC = 20 cycles and SR = 200 mV s−1. The structural characterization indicates that the surface irregularity of the substrate causes an uneven growth of the (200) and (220) crystallographic planes, which present different performances in the electro-oxidation of ethanol. The response surface methodology indicates that the best experimental condition is that obtained with 10 cycles and 218 mV s−1. The Pt/Ti electrodes prepared with the optimized parameters are promising.

Graphical Abstract

A 22 factorial design was applied to prepare Pt/Ti for ethanol eletro-oxidation. Pt electrodeposits have shown an atypical “house of cards” morphology. Preferential orientation of Pt on Ti surface are related to better activity. Response surface methodology points 10 cycles at 218 mV s−1 as the best condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

All experimental data was presented in this manuscript and in Supplementary Materials. Any further details can be accessed by contacting the corresponding author.

References

  1. M. Linardi, Introdução à Ciência e Tecnologia de Células a Combustível, 1st edn. (ArtLiber, São Paulo, 2010).

  2. S. Litster, G. McLean, J. Power Sources. (2004). https://doi.org/10.1016/j.jpowsour.2003.12.055

    Article  Google Scholar 

  3. Y. Balali, S. Stegen, Renew. Sust. Energ. Rev. (2021). https://doi.org/10.1016/j.rser.2020.110185

    Article  Google Scholar 

  4. A.B. Stambouli, E. Traversa, Renew. Sust. Energ. Rev. (2002). https://doi.org/10.1016/S1364-0321(01)00015-6

    Article  Google Scholar 

  5. A. Kirubakaran, S. Jain, R.K. Nema, Renew. Sust. Energ. Rev. (2009). https://doi.org/10.1016/j.rser.2009.04.004

    Article  Google Scholar 

  6. C. Bae, J. Kim, Proc Combust Inst. (2017). https://doi.org/10.1016/j.proci.2016.09.009

    Article  Google Scholar 

  7. F. Wang, J. Qiao, H. Wu, J. Qi, W. Li, Z. Mao, Z. Wang, W. Sun, D. Rooney, K. Sun, J. Chem. Eng. (2017). https://doi.org/10.1016/j.cej.2017.02.111

    Article  Google Scholar 

  8. C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, J.M. Léger, J. Power Sources. (2002). https://doi.org/10.1016/S0378-7753(01)00954-5

    Article  Google Scholar 

  9. V. Del Colle, H. Varela, G. Tremiliosi-Filho, Curr. Opin. Electrochem. (2020). https://doi.org/10.1016/j.coelec.2020.06.010

    Article  Google Scholar 

  10. Z. Guo, L. Sang, Z. Wang, Q. Chen, L. Yang, Z. Liu, Surf. Coat. Technol. (2016). https://doi.org/10.1016/j.surfcoat.2016.07.029

    Article  Google Scholar 

  11. Y. Lee, H. Jeong, Y.S. Park, S. Han, J. Noh, J.S. Lee, Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2017.07.060

    Article  Google Scholar 

  12. M.A. Ehsan, M. Younas, A. Rehman, M. Altaf, M.Y. Khan, A. Al-Ahmed, S. Ahmad, A.A. Isab, Polyhedron (2019). https://doi.org/10.1016/j.poly.2019.03.058

    Article  Google Scholar 

  13. U.D. Madhuri, V.K. Rao, E. Hariprasad, T.P. Radhakrishnan, Mater. Res. Express. (2016). https://doi.org/10.1088/2053-1591/3/4/045018

    Article  Google Scholar 

  14. V.C. Pinto, P.J. Sousa, E.M.F. Vieira, L.M. Gonçalves, G. Minas, Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.126479

    Article  Google Scholar 

  15. E.V. Spinacé, A. Oliveira Neto, E.G. Franco, M. Linardi, E.R. Gonzalez, Quim. Nova. (2004). https://doi.org/10.1590/s0100-40422004000400020

  16. M.F.R. Hanifah, J. Jaafar, M.H.D. Othman, A.F. Ismail, M.A. Rahman, N. Yusof, F. Aziz, Solid State Sci. (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106149

    Article  Google Scholar 

  17. S.R. Brankovic, J. McBreen, R.R. Adžić, J. Electroanal. Chem. (2001). https://doi.org/10.1016/S0022-0728(01)00349-7

    Article  Google Scholar 

  18. Y. Dai, S. Chen, Int. J. Hydrog. Energy (2016). https://doi.org/10.1016/j.ijhydene.2016.09.122

    Article  Google Scholar 

  19. D. Stoychev, A. Papoutsis, A. Kelaidopoulou, G. Kokkinidis, A. Milchev, Mater. Chem. Phys. (2001). https://doi.org/10.1016/S0254-0584(01)00337-6

    Article  Google Scholar 

  20. S.D. Thompson, L.R. Jordan, A.K. Shukla, M. Forsyth, J. Electroanal. Chem. (2001). https://doi.org/10.1016/S0022-0728(01)00637-4

    Article  Google Scholar 

  21. F. Alcaide, G. Álvarez, P.L. Cabot, R.V. Genova-Koleva, H.J. Grande, M.V. Martínez-Huerta, O. Miguel, J. Electroanal. Chem. (2020). https://doi.org/10.1016/j.jelechem.2020.113960

    Article  Google Scholar 

  22. F. Liu, Y. Deng, X. Han, W. Hu, C. Zhong, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2015.09.137

    Article  Google Scholar 

  23. N. Chaisubanan, N. Tantavichet, J. Alloys Compd. (2013). https://doi.org/10.1016/j.jallcom.2013.01.079

    Article  Google Scholar 

  24. C.K. Mavrokefalos, M. Hasan, W. Khunsin, M. Schmidt, S.A. Maier, J.F. Rohan, R.G. Compton, J.S. Foord, Electrochim. Acta (2017). https://doi.org/10.1016/j.electacta.2017.05.039

    Article  Google Scholar 

  25. J. Hou, M. Yang, C. Ke, G. Wei, C. Priest, Z. Qiao, G. Wu, J. Zhang, J. Energy Chem. (2020). https://doi.org/10.1016/j.enchem.2019.100023

    Article  Google Scholar 

  26. P. Dhanasekaran, K. Lokesh, P.K. Ojha, A.K. Sahu, S.D. Bhat, D. Kalpana, J. Colloid Interface Sci. (2020). https://doi.org/10.1016/j.jcis.2020.03.078

    Article  PubMed  Google Scholar 

  27. A. El Attar, L. Oularbi, S. Chemchoub, M. El Rhazi, J. Hydrogen Energy. (2020). https://doi.org/10.1016/j.ijhydene.2020.01.008

    Article  Google Scholar 

  28. F. Fouda-Onana, N. Guillet, A.M. Almayouf, J. Power Sources. (2014). https://doi.org/10.1016/j.jpowsour.2014.08.031

    Article  Google Scholar 

  29. S.N. Ab Malek, Y. Mohd, Int. J. Electrochem. Sci. (2017). https://doi.org/10.20964/2017.02.77

  30. L.F. Arenas, N. Kaishubayeva, C. Ponce de León, F.C. Walsh, Trans. Inst. Met. Finish. (2020). https://doi.org/10.1080/00202967.2020.1698158

    Article  Google Scholar 

  31. M. Sedighi, A.A. Rostami, E. Alizadeh, Int. J. Hydrog. Energy. (2017). https://doi.org/10.1016/j.ijhydene.2016.12.014

    Article  Google Scholar 

  32. M.M. Momeni, Z. Nazari, Surf. Eng. (2016). https://doi.org/10.1080/02670844.2015.1104103

    Article  Google Scholar 

  33. C.D. Silva, P.G. Corradini, V. Del Colle, L.H. Mascaro, F.H.B. de Lima, E.C. Pereira, Electrochim. Acta. (2020). https://doi.org/10.1016/j.electacta.2020.136674

    Article  Google Scholar 

  34. L. Irannejad, S.J. Ahmadi, M. Shamsipur, Chem. Pap. (2019). https://doi.org/10.1007/s11696-019-00727-8

    Article  Google Scholar 

  35. H.B. Hassan, Open Electrochem. J. (2009). https://doi.org/10.2174/1876505x00901010019

    Article  Google Scholar 

  36. S.D. Brown, R.S. Bear, S.N. Deming, Crit Rev Anal Chem. (1993). https://doi.org/10.1080/10408349308048820

    Article  Google Scholar 

  37. I.E. Frank, B.R. Kowalski, Anal. Chem. (1982). https://doi.org/10.1002/chin.198249366

    Article  PubMed  Google Scholar 

  38. C.R.T. Tarley, G. Silveira, W.N.L. dos Santos, G.D. Matos, E.G.P. da Silva, M.A. Bezerra, M. Miró, S.L.C. Ferreira, Microchem. J. (2009). https://doi.org/10.1016/j.microc.2009.02.002

    Article  Google Scholar 

  39. L. Pinto, S.G. Lemos, Microchem. J. (2013). https://doi.org/10.1016/j.microc.2013.05.012

    Article  Google Scholar 

  40. A. Caglar, T. Sahan, M.S. Cogenli, A.B. Yurtcan, N. Aktas, H. Kivrak, Int. J. Hydrogen Energy. (2018). https://doi.org/10.1016/j.ijhydene.2018.04.208

    Article  Google Scholar 

  41. N. Dimov, H. Noguchi, M. Yoshio, J. Power Sources. (2006). https://doi.org/10.1016/j.jpowsour.2005.06.006

    Article  Google Scholar 

  42. A.A. Zulke, R. Matos, E.C. Pereira, Electrochim. Acta. (2013). https://doi.org/10.1016/j.electacta.2013.05.027

    Article  Google Scholar 

  43. R. Carrera-Cerritos, C. Ponce De León, J. Ledesma-García, R. Fuentes-Ramírez, L.G. Arriaga, RSC Adv. (2014). https://doi.org/10.1039/c4ra01263a

    Article  Google Scholar 

  44. F.G.B. San, S. Dursun, M.S. Yazici, Int. J. Energy Res. (2019). https://doi.org/10.1002/er.4579

    Article  Google Scholar 

  45. V.P. dos Santos, G. Tremiliosi Filho, Quim. Nova. (2001). https://doi.org/10.1590/s0100-40422001000600024

  46. D. Chen, Q. Tao, L.W. Liao, S.X. Liu, Y.X. Chen, S. Ye, Electrocatalysis (2011). https://doi.org/10.1007/s12678-011-0054-1

    Article  Google Scholar 

  47. K. Bergamaski, J.F. Gomes, B.E. Goi, F.C. Nart, Eclet. Quim. (2003). https://doi.org/10.1590/S0100-46702003000200011

    Article  Google Scholar 

  48. V. Del Colle, A. Berná, G. Tremiliosi-Filho, E. Herrero, J.M. Feliu, Phys. Chem. Chem. Phys. (2008). https://doi.org/10.1039/b802683a

    Article  PubMed  Google Scholar 

  49. C. Busõ-Rogero, E. Herrero, J.M. Feliu, ChemPhysChem (2014). https://doi.org/10.1002/cphc.201402044

    Article  PubMed  Google Scholar 

  50. F. Colmati, G. Tremiliosi-Filho, E.R. Gonzalez, A. Berná, E. Herrero, J.M. Feliu, Faraday Discuss. (2008). https://doi.org/10.1039/b802160k

    Article  PubMed  Google Scholar 

  51. J. Souza-Garcia, E. Herrero, J.M. Feliu, ChemPhysChem (2010). https://doi.org/10.1002/cphc.201000139

    Article  PubMed  Google Scholar 

  52. R.E. Bruns, I.E. Scarminio and B. De Barros Neto, Statistical Design — Chemometrics, 1st edn. (In Data handling in Science and Technology Amsterdam 2006).

Download references

Funding

The authors thank the funding agency CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico—proc. n. 437718/2016–5). J.P.T. da Silva Santos thanks CAPES (Coordenação de Aperfeiçoamento de Pessoa de Nível Superior) for the scholarship, to LAMUME - Laboratório Multiusuário de Microscopia Eletrônica (Instituto de Física – UFBA), and M.F. Gromboni thanks Fundação de Amparo à Pesquisa no Estado de São Paulo, FAPESP (#2019/00288–0), FAPESP/CDMF (#2013/07296–2).

Author information

Authors and Affiliations

Authors

Contributions

J.P.T. da Silva Santos performed the majority of electrochemical experiments and prepared the figures and tables. M. F. Gromboni performed the XRD characterization of electrodeposits and interpretation. S.G. Lemos has planned the chemometric experiments and helped the results interpretation. V. Del Colle helped in the interpretation of the electrochemical experiments. A.J.S. Mascarenhas and V.C. Fernandes have written the main manuscript text and the interpretation of the results. V.C. Fernandes is the main researcher responsible for the project and the formal doctoral supervisor of J.P.T. da Silva Santos.

Corresponding author

Correspondence to Valéria Cristina Fernandes.

Ethics declarations

Ethical Approval

No human and/or animal studies were performed in this research project.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12546 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Santos, J.P.T., Lemos, S.G., Gromboni, M.F. et al. Chemometric Investigation of Platinum Electrodeposition on Titanium Substrates for Ethanol Electro-oxidation. Electrocatalysis 14, 570–580 (2023). https://doi.org/10.1007/s12678-023-00817-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-023-00817-y

Keywords

Navigation