Log in

Vacancy-Assisted Fast Electron Transport Non-noble Metal Electrocatalyst Mn0.09-MoS2 for Hydrogen Evolution Reaction

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Develo** the electrocatalyst with low cost, high efficiency, and environmentally friendly for hydrogen evolution reaction (HER) is important for the goal of high conversion of sustainable energy resources. Herein, a transition metal electrocatalyst named as Mn0.09-MoS2 is designed via a facile route. The successful substituting of Mn allows partial Mo in the original sulfide replaced by Mn and forms Mn-S bond, leading the lattice mismatch of original MoS2 and large quantities of assisted sulfur vacancies. The high S vacancy structure has the advantages of both morphology and intrinsic chemical properties such as rich vacancy assistance, abundant active sites, and fast electron transfer speed, promoting Mn0.09-MoS2/NF with excellent HER performance. The density functional theory calculations reveal the intrinsic activation reason that the energy gap of Mn0.09-MoS2 is narrower and the bandgap appears close to the Fermi level, illustrating that Mn substituting can effectively lower the energy barrier for electron transition and promote the electronic conductivity. Benefiting to these advantages, the designed Mn0.09-MoS2/NF only requires an overpotential of 141 mV to reach 10 mA cm−2 current density with an excellent electrochemical active surface area (1980 cm2) and pretty fast turnover frequency (0.299 s−1) in 1 M KOH. This exploration provides a feasible strategy for the controllable preparation and application of transition metal–based electrocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Du, R.M. Kong, X. Guo, F. Qu, J. Li, Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. Nanoscale 10, 21617–21624 (2018)

    Article  CAS  Google Scholar 

  2. S.H. Oh, R. Black, E. Pomerantseva, J.H. Lee, L.F. Nazar, Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O2 batteries. Nat Chem 4, 1004–1010 (2012)

    Article  CAS  Google Scholar 

  3. Y. Yan, B.Y. **a, B. Zhao, X. Wang, A review on noble-metal-free bifunctional `heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A. 4, 17587–17603 (2016)

    Article  CAS  Google Scholar 

  4. G. Darabdhara, P.K. Boruah, P. Borthakur, N. Hussain, M.R. Das, T. Ahamad, S.M. Alshehri, V. Malgras, K.C. Wu, Y. Yamauchi, Correction: reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water. Nanoscale 8, 19174–19175 (2016)

    Article  CAS  Google Scholar 

  5. W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang, J. Wang, Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem Commun (Camb) 52, 1486–1489 (2016)

    Article  CAS  Google Scholar 

  6. S. Peng, L. Li, J. Zhang, T.L. Tan, T. Zhang, D. Ji, X. Han, F. Cheng, S. Ramakrishna, Engineering Co9S8/WS2 array films as bifunctional electrocatalysts for efficient water splitting. J. Mater. Chem. A. 5, 23361–23368 (2017)

    Article  CAS  Google Scholar 

  7. Q. Liu, Q. Fang, W. Chu, Y. Wan, X. Li, W. Xu, M. Habib, S. Tao, Y. Zhou, D. Liu, T. **ang, A. Khalil, X. Wu, M. Chhowalla, P.M. Ajayan, L. Song, Electron-substituted 1T-MoS2 via interface engineering for enhanced electrocatalytic hydrogen evolution. Chem. Mater. 29, 4738–4744 (2017)

    Article  CAS  Google Scholar 

  8. G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S.T. Pantelides, W. Zhou, R. Vajtai, P.M. Ajayan, Defects engineered monolayer MoS2 for improved Hydrogen evolution reaction. Nano Lett. 16, 1097–1103 (2016)

    Article  CAS  Google Scholar 

  9. Y. Huang, Y. Sun, X. Zheng, T. Aoki, B. Pattengale, J. Huang, X. He, W. Bian, S. Younan, N. Williams, J. Hu, J. Ge, N. Pu, X. Yan, X. Pan, L. Zhang, Y. Wei, J. Gu, Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat Commun 10, 982 (2019)

    Article  CAS  Google Scholar 

  10. Q. Wu, A. Dong, C. Yang, L. Ye, L. Zhao, Q. Jiang, Metal-organic framework derived Co3O4@Mo-Co3S4-Ni3S2 heterostructure supported on Ni foam for overall water splitting. Chem. Eng. J. 413, 127482 (2021)

    Article  CAS  Google Scholar 

  11. L. Zeng, Z. Liu, K. Sun, Y. Chen, J. Zhao, Y. Chen, Y. Pan, Y. Lu, Y. Liu, C. Liu, Multiple modulations of pyrite nickel sulfides via metal heteroatom substituting engineering for boosting alkaline and neutral hydrogen evolution. J. Mater. Chem. A. 7, 25628–25640 (2019)

    Article  CAS  Google Scholar 

  12. Y. Li, B. Jia, B. Chen, Q. Liu, M. Cai, Z. Xue, Y. Fan, H.P. Wang, C.Y. Su, G. Li, MoF-derived Mn substituted porous CoP nanosheets as efficient and stable bifunctional electrocatalysts for water splitting. Dalton Trans 47, 14679–14685 (2018)

    Article  CAS  Google Scholar 

  13. J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, Trends in the exchange current for Hydrogen evolution. J. Electrochem. Soc. 152, 23–26 (2005)

    Article  Google Scholar 

  14. H. Zhong, Z. Bai, B. Zou, Tuning the luminescence properties of colloidal I-III-VI semiconductor nanocrystals for optoelectronics and biotechnology applications. J Phys Chem Lett 3, 3167–3175 (2012)

    Article  CAS  Google Scholar 

  15. L. Zhi**, X. BeiBei, H. Min, Y. Linghui, W. Zongpeng, H. Yucong, S. Shijie, Gu. Zhang Qinghua, Lin and Zhong Wenwu., Realizing negatively charged metal atoms through controllable d-electron transfer in ternary Ir1−xRhxSb intermetallic alloy for hydrogen evolution reaction. Adv. Energy Mater. 13, 2200855 (2022)

    Google Scholar 

  16. W. Zongpeng, S. Shijie, L. Zhi**, T. Weiying, Z. QingHua, Gu. Meng Fanqi, Lin and Zhong Wenwu., Regulating the local spin state and band structure in Ni3S2 nanosheet for improved oxygen evolution activity. Adv. Funct. Mater. 32, 2112832 (2022)

    Article  Google Scholar 

  17. S. Shijie, W. Zongpeng, L. Zhi**, S. Kai, Z. Qinghua, Gu. Meng Fanqi, Lin and Zhong Wenwu., Crystalline-amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv. Mater 34, 2110631 (2022)

    Article  Google Scholar 

  18. H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012)

    Article  CAS  Google Scholar 

  19. C. Chen, Z. Feng, Y. Feng, Y. Yue, C. Qin, D. Zhang, W. Feng, Large-Scale synthesis of a uniform film of bilayer MoS2 on graphene for 2D heterostructure phototransistors. ACS Appl Mater Interfaces 8, 19004–19011 (2016)

    Article  CAS  Google Scholar 

  20. J.A. Dawson, I. Tanaka, Oxygen vacancy formation and reduction properties of beta-MnO2 grain boundaries and the potential for high electrochemical performance. ACS Appl. Mater. 6, 17776–17784 (2014)

    Article  CAS  Google Scholar 

  21. W. Song, W. Lai, Z. Chen, J. Cao, H. Wang, Y. Lian, W. Yang, X. Jiang, Fabrication of 3D porous hierarchical NiMoS flowerlike architectures for hydrodesulfurization applications. ACS Appl. Nano Mater. 1, 442–454 (2017)

    Article  Google Scholar 

  22. S. Eijsbouts, L. Vandenoetelaar, R. Vanpuijenbroek, MoS morphology and promoter segregation in commercial type 2 NiMo/AlO and CoMo/AlO hydroprocessing catalysts. J Catal 229, 352–364 (2005)

    Article  CAS  Google Scholar 

  23. Y. Guo, J. Tang, H. Qian, Z. Wang, Y. Yamauchi, One-Pot synthesis of zeolitic imidazolate framework 67-derived hollow Co3S4@MoS2 heterostructures as efficient bifunctional catalysts. Chem. Mater. 29, 5566–5573 (2017)

    Article  CAS  Google Scholar 

  24. R. Tong, Y. Qu, Q. Zhu, X. Wang, Y. Lu, S. Wang, H. Pan, Combined experimental and theoretical assessment of WXy (X = C, N, S, P) for hydrogen evolution reaction. ACS Appl. Energy Mater. 3, 1082–1088 (2019)

    Article  Google Scholar 

  25. M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. **, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013)

    Article  CAS  Google Scholar 

  26. R. Jiang, B. Deng, L. Pi, L. Hu, D. Chen, Y. Dou, X. Mao, D. Wang, Molten electrolyte-modulated electrosynthesis of multi-anion Mo-based lamellar nanohybrids derived from natural minerals for boosting hydrogen evolution. ACS Appl. Mater. 12, 57870–57880 (2020)

    Article  CAS  Google Scholar 

  27. Y. Huang, L. Sun, Z. Yu, R. Jiang, J. Huang, Y. Hou, F. Yang, B. Zhang, R. Zhang, Y. Zhang, Adjustable anchoring of Ni/Co cations by oxygen-containing functional groups on functionalized graphite paper and accelerated mass/electron transfer for overall water splitting. Catal. 10, 2627–2643 (2020)

    CAS  Google Scholar 

  28. L. Wen, J. Yu, C. **ng, D. Liu, X. Lyu, W. Cai, X. Li, Flexible vanadium-substituted Ni2P nanosheet arrays grown on carbon cloth for an efficient hydrogen evolution reaction. Nanoscale 11, 4198–4203 (2019)

    Article  CAS  Google Scholar 

  29. Y. Gong, Y. Lin, Z. Yang, F. Jiao, J. Li, W. Wang, High-performance bifunctional flower-like Mn-substituted Cu7.2S4@NiS2@NiS/NF catalyst for overall water splitting, Appl. Surf. Sci. 476, 840–849 (2019)

  30. Y. Zhang, B. Cui, O. Derr, Z. Yao, Z. Qin, X. Deng, J. Li, H. Lin, Hierarchical cobalt-based hydroxide microspheres for water oxidation. Nanoscale 6, 3376–3383 (2014)

    Article  CAS  Google Scholar 

  31. M.J. Szary, Al substituted MoS2 for adsorption-based water collection. Appl. Surf. Sci. 529, 147083 (2020)

    Article  CAS  Google Scholar 

  32. C. Gu, G. Zhou, J. Yang, H. Pang, M. Zhang, Q. Zhao, X. Gu, S. Tian, J. Zhang, L. Xu, Y. Tang, NiS/MoS2 Mott-Schottky heterojunction-induced local charge redistribution for high-efficiency urea-assisted energy-saving hydrogen production, Chem. Eng. J. 443 (2022)

  33. L. Liu, S.J. Tan, T. Horikawa, D.D. Do, D. Nicholson, J. Liu, Water adsorption on carbon - a review. Adv Colloid Interface Sci 250, 64–78 (2017)

    Article  CAS  Google Scholar 

  34. J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem Rev 120, 851–918 (2020)

    Article  CAS  Google Scholar 

  35. J.Y. Zhang, H. Wang, Y. Tian, Y. Yan, Q. Xue, T. He, H. Liu, C. Wang, Y. Chen, B.Y. **a, Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode. Angew. Chem. Int. Ed. 57, 7649–7653 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Foundation of the Undergraduate Innovation and Entrepreneurship Training Program of Guangxi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zebin Yu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6673 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Song, H., Liu, C. et al. Vacancy-Assisted Fast Electron Transport Non-noble Metal Electrocatalyst Mn0.09-MoS2 for Hydrogen Evolution Reaction. Electrocatalysis 13, 807–817 (2022). https://doi.org/10.1007/s12678-022-00765-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00765-z

Keywords

Navigation