Log in

Eco-friendly Strategies for Biological Synthesis of Green Nanoparticles with Promising Applications

  • Review
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In recent years, the principles of green chemistry have evolved to encompass the synthesis and application of nanoparticles (NPs), giving rise to the concept of green NPs through the biomass conversion techniques. This comprehensive review article delves into the intersection of green chemistry and nanotechnology, providing an in-depth exploration of sustainable approaches to NPs synthesis by the utilization of biomass nature product, their versatile applications, and environmental considerations. We discuss the utilization of natural resources for biomass conversion, such as plant extracts and microorganisms, in NPs synthesis, highlighting their renewable and eco-friendly attributes. Moreover, we examine the diverse applications of green NPs across various sectors, including medicine, agriculture, and environmental remediation, emphasizing their unique properties and potential impact on sustainable development. Safety considerations and regulatory compliance related to green NPs usage are also addressed. Furthermore, we present a critical assessment of the current state of green NPs research, outlining future directions and challenges in scaling up production, standardization, toxicological studies, and life cycle assessments. This comprehensive overview offers valuable insights into the evolving field of green NPs, emphasizing the crucial role they play in advancing both nanotechnology and environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Azeez, S. O., Suleman, K. O., Adewale, A. A., Olasunkanmi, N. K., Sanusi, Y. K., & Azeez, S. A. (2023). Effect of copper nanoparticle contents in polyaniline/ copper nanoparticle (PANi/CuNPs) composites photoanode material on the photovoltaic performance of organic solar cells. Letters in Applied NanoBioScience, 12, 153.

    Google Scholar 

  2. Nguyen, T. T. T., Nguyen, M. T. L., Nguyen, T. K. N., Huynh, H. T., Le, M. N., & Le, P. H. (2024). Antibacterial and photoprotective activities of silver nanoparticles of lichen extract loaded in activated carbon. Letters in Applied NanoBioScience, 13, 11.

  3. Palanisamy, D. S., Gounder, B. S., Selvaraj, K., Kandhasamy, S., Alqahtani, T., Alqahtani, A., Chidambaram, K., Arunachalam, K., Alkahtani, A. M., Chandramoorthy, H. C., Sharma, N., Rajeshkumar, S., & Marwaha, L. (2024). Synergistic antibacterial and mosquitocidal effect of Passiflora foetida synthesized silver nanoparticles. Brazilian Journal of Biology, 84, e263391.

    Article  Google Scholar 

  4. Paragas, D. S., & Viloria, J. L. P. (2024). Green synthesis of silver and copper nanoparticles for potential biopesticide application against oriental fruit fly (Bactrocera dorsalis Hendel). Letters in Applied NanoBioScience, 13, 31.

    Google Scholar 

  5. Sharifi-Rad, M., Kishore Mohanta, Y., Pohl, P., Nayak, D., & Messaoudi, M. (2024). Facile phytosynthesis of gold nanoparticles using Nepeta bodeana Bunge: Evaluation of its therapeutics and potential catalytic activities. Journal of Photochemistry and Photobiology A: Chemistry, 446, 115150.

    Article  Google Scholar 

  6. Velmurugan, S., Anupriya, J., Chen, S. M., Traiwatcharanon, P., Cheng, S. H., & Wongchoosuk, C. (2024). Synergies of WO3 and Co3O4 intercalated ball milling exfoliated graphene 3D helix electrocatalyst: A highly sensitive electrochemical detection of mesotrione herbicide in vegetable samples. Food Chemistry, 432, 137221.

    Article  Google Scholar 

  7. Wali, S., Zahra, M., Okla, M. K., Wahidah, H. A., Tauseef, I., Haleem, K. S., Farid, A., Maryam, A., Abdelgawad, H., Adetunji, C. O., Akhtar, N., Akbar, S., Rehman, W., Yasir, H., & Shakira, G. (2024). Brassica oleracea L. (Acephala Group) based zinc oxide nanoparticles and their efficacy as antibacterial agent. Brazilian Journal of Biology, 84, e259351.

    Article  Google Scholar 

  8. Yang, H., Du, G., Ni, K., Liu, T., Su, H., Wang, H., Ran, X., Gao, W., Tan, X., & Yang, L. (2023). Sucrose-tannin-nanosilica hybrid bio-adhesive based on dual dynamic Schiff base and disulfide bonds with enhanced toughness and cohesion. International Journal of Biological Macromolecules, 253, 126672.

    Article  Google Scholar 

  9. Zhang, H., Zou, Y., Lu, K., Wu, Y., Lin, Y., Cheng, J., Liu, C., Chen, H., Zhang, Y., & Yu, Q. (2024). A nanoplatform with oxygen self-supplying and heat-sensitizing capabilities enhances the efficacy of photodynamic therapy in eradicating multidrug-resistant biofilms. Journal of Materials Science and Technology., 169, 209–219.

    Article  Google Scholar 

  10. Hu, F., Fu, Q., Li, Y., Yan, C., **ao, D., Ju, P., Hu, Z., Li, H., & Ai, S. (2024). Zinc-doped carbon quantum dots-based ratiometric fluorescence probe for rapid, specific, and visual determination of tetracycline hydrochloride. Food Chemistry, 431, 137097.

    Article  Google Scholar 

  11. Huang, Y., Chen, S., Huang, W., Zhuang, X., Zeng, J., Rong, M., & Niu, L. (2024). Visualized test of environmental water pollution and meat freshness: Design of Au NCs-CDs-test paper/PVA film for ratiometric fluorescent sensing of sulfide. Food Chemistry, 432, 137292.

    Article  Google Scholar 

  12. Abd El Salam, H., Nassar, H. N., Khidr, A. S., & Zaki, T. (2018). Antimicrobial activities of green synthesized Ag nanoparticles@ Ni-MOF nanosheets. Journal of Inorganic and Organometallic Polymers and Materials, 28, 2791–2798.

    Article  Google Scholar 

  13. Shamaila, S., Sajjad, A. K. L., Farooqi, S. A., Jabeen, N., Majeed, S., & Farooq, I. (2016). Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Applied Materials Today, 5, 150–199.

    Article  Google Scholar 

  14. Zhang, Y., Qi, G., Yao, L., Huang, L., Wang, J., & Gao, W. (2022). Effects of metal nanoparticles and other preparative materials in the environment on plants: From the perspective of improving secondary metabolites. Journal of Agricultural and Food Chemistry, 70, 916–933.

    Article  Google Scholar 

  15. Adeyemi, J. O., Oriola, A. O., Onwudiwe, D. C., & Oyedeji, A. O. (2022). Plant extracts mediated metal-based nanoparticles: Synthesis and biological applications. Biomolecules, 12, 627.

    Article  Google Scholar 

  16. Chopra, H., Bibi, S., Singh, I., Hasan, M. M., Khan, M. S., Yousafi, Q., Baig, A. A., Rahman, M. M., Islam, F., & Emran, T. B. (2022). Green metallic nanoparticles: Biosynthesis to applications. Frontiers in Bioengineering and Biotechnology, 10, 874742.

    Article  Google Scholar 

  17. Mishra, V., Mishra, R. K., Dikshit, A., & Pandey, A. C. (2014). Emerging technologies and management of crop stress tolerance (pp. 159–180). Elsevier.

    Book  Google Scholar 

  18. Ocsoy, I., Tasdemir, D., Mazicioglu, S., & Tan, W. (2018). Nanotechnology in plants. Plant Genetics and Molecular Biology, 164, 263–275.

    Google Scholar 

  19. Hu, J., & **anyu, Y. (2021). When nano meets plants: A review on the interplay between nanoparticles and plants. Nano Today, 38, 101143.

    Article  Google Scholar 

  20. Esa, Y. A. M., & Sapawe, N. (2020). A short review on zinc metal nanoparticles synthesize by green chemistry via natural plant extracts. Materials Today: Proceedings, 31, 386–393.

    Google Scholar 

  21. Rath, M., SwatiS, P., & Dhal, N. K. (1999). Synthesis of silver nano particles from plant extract and its application in cancer treatment: A review. The Journal of Internet Banking and Commerce, 4, 137–145.

    Google Scholar 

  22. Hameed, S., Iqbal, J., Ali, M., Khalil, A. T., Ahsan Abbasi, B., Numan, M., & Shinwari, Z. K. (2019). Green synthesis of zinc nanoparticles through plant extracts: establishing a novel era in cancer theranostics. Materials Research Express, 6, 102005.

    Article  Google Scholar 

  23. Hanafi, M. F., & Sapawe, N. (2019). The potential of ZrO2 catalyst toward degradation of dyes and phenolic compound. Materials Today: Proceedings, 19, 1524–1528.

    Google Scholar 

  24. Patra, J. K., & Baek, K.-H. (2014). Green nanobiotechnology: Factors affecting synthesis and characterization techniques. Journal of Nanomaterials, 2014, 417305.

    Article  Google Scholar 

  25. Basnet, P., Chanu, T. I., Samanta, D., & Chatterjee, S. (2018). A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents. Journal of Photochemistry and Photobiology B: Biology, 183, 201–221.

    Article  Google Scholar 

  26. Ahmed, S., Chaudhry, S. A., & Ikram, S. (2017). A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. Journal of Photochemistry and Photobiology B: Biology, 166, 272–284.

    Article  Google Scholar 

  27. Darroudi, M., Sabouri, Z., Oskuee, R. K., Zak, A. K., Kargar, H., & Abd Hamid, M. H. N. (2014). Green chemistry approach for the synthesis of ZnO nanopowders and their cytotoxic effects. Ceramics International, 40, 4827–4831.

    Article  Google Scholar 

  28. Elsupikhe, R. F., Ahmad, M. B., Shameli, K., Ibrahim, N. A., & Zainuddin, N. (2016). Photochemical reduction as a green method for the synthesis and size control of silver nanoparticles in κ-carrageenan. IEEE Transactions on Nanotechnology, 15, 209–213.

    Article  Google Scholar 

  29. Azizi, S., Ahmad, M. B., Namvar, F., & Mohamad, R. (2014). Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Materials Letters, 116, 275–277.

    Article  Google Scholar 

  30. Abad, L. V., Kudo, H., Saiki, S., Nagasawa, N., Tamada, M., Fu, H., Muroya, Y., Lin, M., Katsumura, Y., Relleve, L. S., Aranilla, C. T., & DeLaRosa, A. M. (2010). Radiolysis studies of aqueous κ-carrageenan. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268, 1607–1612.

    Article  Google Scholar 

  31. Hamrayev, H., & Shameli, K. (2021). Biopolymer-based green synthesis of zinc oxide (Zno) nanoparticles. In Proceedings of the IOP Conference Series: Materials Science and Engineering (Vol. 1051, No. 1, pp. 012088). IOP Publishing.

  32. Rizki, I. N., & Klaypradit, W. (2023). and Patmawati, Utilization of marine organisms for the green synthesis of silver and gold nanoparticles and their applications: A review. Sustainable Chemistry and Pharmacy, 31, 100888.

    Article  Google Scholar 

  33. Irfan, M., Bagherpour, S., Munir, H., Perez-Garcia, L., Fedatto Abelha, T., Afroz, A., Zeeshan, N., & Rashid, U. (2023). GC–MS metabolomics profile of methanol extract of Acacia modesta gum and gum-assisted fabrication and characterization of gold nanoparticles through green synthesis approach. International Journal of Biological Macromolecules, 252, 126215.

    Article  Google Scholar 

  34. Kesharwani, P., Ma, R., Sang, L., Fatima, M., Sheikh, A., Abourehab, M. A. S., Gupta, N., Chen, Z. S., & Zhou, Y. (2023). Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Molecular Cancer, 22, 98.

    Article  Google Scholar 

  35. Majumdar, R., & Kar, P. K. (2023). Biosynthesis, characterization and anthelmintic activity of silver nanoparticles of Clerodendrum infortunatum isolate. Scientific Reports, 13, 7415.

    Article  Google Scholar 

  36. Mohammadi, L., Taghavi, R., Hosseinifard, M., Vaezi, M. R., & Rostamnia, S. (2023). Gold nanoparticle decorated post-synthesis modified UiO-66-NH2 for A3-coupling preparation of propargyl amines. Scientific Reports, 13, 9051.

    Article  Google Scholar 

  37. Nardi, N., Baumgarten, L. G., Dreyer, J. P., Santana, E. R., Winiarski, J. P., & Vieira, I. C. (2023). Nanocomposite based on green synthesis of gold nanoparticles decorated with functionalized multi-walled carbon nanotubes for the electrochemical determination of hydroxychloroquine. Journal of Pharmaceutical and Biomedical Analysis, 236, 115681.

    Article  Google Scholar 

  38. Sanchis-Gual, R., Coronado-Puchau, M., Mallah, T., & Coronado, E. (2023). Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism. Coordination Chemistry Reviews, 480, 215025.

    Article  Google Scholar 

  39. Nour, S., Baheiraei, N., Imani, R., Khodaei, M., Alizadeh, A., Rabiee, N., & Moazzeni, S. M. (2019). A review of accelerated wound healing approaches: Biomaterial-assisted tissue remodeling. Journal of Materials Science: Materials in Medicine, 30, 1–15.

    Google Scholar 

  40. Bondarenko, O., & Juganson, K. (2013). Angela Ivask, Kaja Kasemets, Monika Mortimer & Anne Kahru. Archives of Toxicology, 87, 1181–1200.

    Article  Google Scholar 

  41. Mohammadlou, M., Maghsoudi, H., & Jafarizadeh-Malmiri, H. (2016). A review on green silver nanoparticles based on plants: Synthesis, potential applications and eco-friendly approach. International Food Research Journal., 23, 446.

    Google Scholar 

  42. Ali, S. M., Yousef, N. M., & Nafady, N. A. (2015). Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi. Journal of Nanomaterials, 2015, 218904.

    Article  Google Scholar 

  43. Dhand, V., Soumya, L., Bharadwaj, S., Chakra, S., Bhatt, D., & Sreedhar, B. (2016). Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Materials Science and Engineering: C, 58, 36–43.

    Article  Google Scholar 

  44. Vanlalveni, C., Rajkumari, K., Biswas, A., Adhikari, P. P., Lalfakzuala, R., & Rokhum, L. (2018). Green synthesis of silver nanoparticles using Nostoc linckia and its antimicrobial activity: A novel biological approach. BioNanoScience., 8, 624–631.

    Article  Google Scholar 

  45. Gardea-Torresdey, J. L., Gomez, E., Peralta-Videa, J. R., Parsons, J. G., Troiani, H., & Jose-Yacaman, M. (2003). Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir, 19, 1357–1361.

    Article  Google Scholar 

  46. Miri, A., Sarani, M., Bazaz, M. R., & Darroudi, M. (2015). Plant-mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 141, 287–291.

    Article  Google Scholar 

  47. Medda, S., Hajra, A., Dey, U., Bose, P., & Mondal, N. K. (2015). Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Applied Nanoscience, 5, 875–880.

    Article  Google Scholar 

  48. Premasudha, P., Venkataramana, M., Abirami, M., Vanathi, P., Krishna, K., & Rajendran, R. (2015). Biological synthesis and characterization of silver nanoparticles using Eclipta Alba leaf extract and evaluation of its cytotoxic and antimicrobial potential. Bulletin of Materials Science, 38, 965–973.

    Article  Google Scholar 

  49. Hemlata, M., Meena, P. R., Singh, A. P., & Tejavath, K. K. (2020). Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega, 5, 5520–5528.

    Article  Google Scholar 

  50. Velmurugan, P., Sivakumar, S., Young-Chae, S., Seong-Ho, J., Pyoung-In, Y., Jeong-Min, S., & Sung-Chul, H. (2015). Synthesis and characterization comparison of peanut shell extract silver nanoparticles with commercial silver nanoparticles and their antifungal activity. Journal of Industrial and Engineering Chemistry, 31, 51–54.

    Article  Google Scholar 

  51. Roy, K., Sarkar, C., & Ghosh, C. (2014). Green synthesis of silver nanoparticles using fruit extract of Malus domestica and study of its antimicrobial activity. Digest Journal of Nanomaterials and Biostructures, 9, 1137–1147.

    Google Scholar 

  52. Odeniyi, M. A., Okumah, V. C., Adebayo-Tayo, B. C., & Odeniyi, O. A. (2020). Green synthesis and cream formulations of silver nanoparticles of Nauclea latifolia (African peach) fruit extracts and evaluation of antimicrobial and antioxidant activities. Sustainable Chemistry and Pharmacy, 15, 100197.

    Article  Google Scholar 

  53. Niluxsshun, M. C. D., Masilamani, K., & Mathiventhan, U. (2021). Green synthesis of silver nanoparticles from the extracts of fruit peel of Citrus tangerina, Citrus sinensis, and Citrus limon for antibacterial activities. Bioinorganic Chemistry and Applications, 2021, 6695734.

    Article  Google Scholar 

  54. Erdogan, O., Abbak, M., Demirbolat, G. M., Birtekocak, F., Aksel, M., Pasa, S., & Cevik, O. (2019). Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS ONE, 14, e0216496.

    Article  Google Scholar 

  55. Rafique, M., Sadaf, I., Rafique, M. S., & Tahir, M. B. (2017). A review on green synthesis of silver nanoparticles and their applications. Artificial Cells, Nanomedicine, and Biotechnology, 45, 1272–1291.

    Article  Google Scholar 

  56. Abdelghany, T., Al-Rajhi, A. M., Al Abboud, M. A., Alawlaqi, M., Ganash Magdah, A., Helmy, E. A., & Mabrouk, A. S. (2018). Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. BioNanoScience, 8, 5–16.

    Article  Google Scholar 

  57. Quinteros, M. A., Aiassa Martínez, I. M., Dalmasso, P. R., & Páez, P. L. (2016). Silver nanoparticles: biosynthesis using an ATCC reference strain of Pseudomonas aeruginosa and activity as broad spectrum clinical antibacterial agents. International Journal of Biomaterials, 2016, 1.

    Article  Google Scholar 

  58. Divya, K., Kurian, L. C., Vijayan, S., & Manakulam Shaikmoideen, J. (2016). Green synthesis of silver nanoparticles by Escherichia coli: Analysis of antibacterial activity. Journal of Water and Environmental Nanotechnology, 1, 63–74.

    Google Scholar 

  59. Saravanan, M., Barik, S. K., MubarakAli, D., Prakash, P., & Pugazhendhi, A. (2018). Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microbial Pathogenesis, 116, 221–226.

    Article  Google Scholar 

  60. Barre, A., Culerrier, R., Granier, C., Selman, L., Peumans, W. J., Van Damme, E. J., Bienvenu, F., Bienvenu, J., & Rougé, P. (2009). Map** of IgE-binding epitopes on the major latex allergen Hev b 2 and the cross-reacting 1, 3β-glucanase fruit allergens as a molecular basis for the latex-fruit syndrome. Molecular Immunology, 46, 1595–1604.

    Article  Google Scholar 

  61. Esmail, R., Afshar, A., Morteza, M., Abolfazl, A., & Akhondi, E. (2022). Synthesis of silver nanoparticles with high efficiency and stability by culture supernatant of Bacillus ROM6 isolated from Zarshouran gold mine and evaluating its antibacterial effects. BMC Microbiology, 22, 1–10.

    Article  Google Scholar 

  62. Singh, A. K., Rathod, V., Singh, D., Ninganagouda, S., Kulkarni, P., Mathew, J., & Haq, M. U. (2015). Bioactive silver nanoparticles from endophytic fungus Fusarium sp. isolated from an ethanomedicinal plant Withania somnifera (Ashwagandha) and its antibacterial activity. International Journal of Nanomaterials and Biostructures, 5, 15–19.

    Google Scholar 

  63. Aziz, N., Faraz, M., Sherwani, M. A., Fatma, T., & Prasad, R. (2019). Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Frontiers in Chemistry, 7, 65.

    Article  Google Scholar 

  64. Rose, G. K., Soni, R., Rishi, P., & Soni, S. K. (2019). Optimization of the biological synthesis of silver nanoparticles using Penicillium oxalicum GRS-1 and their antimicrobial effects against common food-borne pathogens. Green Processing and Synthesis, 8, 144–156.

    Article  Google Scholar 

  65. Shafiq, S. A., Al-Shammari, R. H., & Majeed, H. Z. (2016). Study of biosynthesis silver nanoparticles by Fusarium graminaerum and test their antimicrobial activity. International Journal of Innovation and Applied Studies, 15, 43.

    Google Scholar 

  66. El-Ashmony, R. M., Zaghloul, N. S., Milošević, M., Mohany, M., Al-Rejaie, S. S., Abdallah, Y., & Galal, A. A. (2022). The biogenically efficient synthesis of silver nanoparticles using the fungus Trichoderma harzianum and their antifungal efficacy against Sclerotinia sclerotiorum and Sclerotium rolfsii. Journal of Fungi, 8, 597.

    Article  Google Scholar 

  67. Owaid, M. N., Raman, J., Lakshmanan, H., Al-Saeedi, S. S. S., Sabaratnam, V., & Abed, I. A. (2015). Mycosynthesis of silver nanoparticles by Pleurotus cornucopiae var. citrinopileatus and its inhibitory effects against Candida sp. Materials Letters, 153, 186–190.

    Article  Google Scholar 

  68. El-Sheekh, M. M., Shabaan, M. T., Hassan, L., & Morsi, H. H. (2022). Antiviral activity of algae biosynthesized silver and gold nanoparticles against Herps Simplex (HSV-1) virus in vitro using cell-line culture technique. International Journal of Environmental Health Research, 32, 616–627.

    Article  Google Scholar 

  69. Fatima, R., Priya, M., Indurthi, L., Radhakrishnan, V., & Sudhakaran, R. (2020). Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens. Microbial Pathogenesis, 138, 103780.

    Article  Google Scholar 

  70. Sinha, S. N., Paul, D., Halder, N., Sengupta, D., & Patra, S. K. (2015). Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity. Applied Nanoscience, 5, 703–709.

    Article  Google Scholar 

  71. Patel, V., Berthold, D., Puranik, P., & Gantar, M. (2015). Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnology Reports, 5, 112–119.

    Article  Google Scholar 

  72. Annamalai, J., & Nallamuthu, T. (2016). Green synthesis of silver nanoparticles: Characterization and determination of antibacterial potency. Applied Nanoscience, 6, 259–265.

    Article  Google Scholar 

  73. Zhang, Y., Zhang, X., Zhang, L., Alarfaj, A. A., Hirad, A. H., & Alsabri, A. E. (2021). Green formulation, chemical characterization, and antioxidant, cytotoxicity, and anti-human cervical cancer effects of vanadium nanoparticles: A pre-clinical study. Arabian Journal of Chemistry, 14, 103147.

    Article  Google Scholar 

  74. Zhang, Y., **ong, W., Chen, W., & Zheng, Y. (2021). Recent progress on vanadium dioxide nanostructures and devices: Fabrication, properties, applications and perspectives. Nanomaterials, 11(2), 338.

    Article  Google Scholar 

  75. Zhang, Y., Zheng, J., Zhao, Y., Hu, T., Gao, Z., & Meng, C. (2016). Fabrication of V2O5 with various morphologies for high-performance electrochemical capacitor. Applied Surface Science, 377, 385–393.

    Article  Google Scholar 

  76. Mjejri, I., Rougier, A., & Gaudon, M. (2017). Low-cost and facile synthesis of the vanadium oxides V2O3, VO2, and V2O5 and their magnetic, thermochromic and electrochromic properties. Inorganic Chemistry, 56, 1734–1741.

    Article  Google Scholar 

  77. Raj, T. V., Hoskeri, P. A., Hamzad, S., Anantha, M., Joseph, C., Muralidhara, H., Kumar, K. Y., Alharti, F. A., Jeon, B.-H., & Raghu, M. J. I. C. C. (2022). Moringa Oleifera leaf extract mediated synthesis of reduced graphene oxide-vanadium pentoxide nanocomposite for enhanced specific capacitance in supercapacitors. Inorganic Chemistry Communications, 142, 109648.

    Article  Google Scholar 

  78. Chand, T. K., Kalpana, H. M., & Lalithamba, H. S. (2022). Green synthesis of vanadium oxide nanoparticles for thin film based sensor application. In Proceedings of the IOP Conference Series: Materials Science and Engineering (Vol. 1225, No. 1, pp. 012062). IOP Publishing.

  79. Afolalu, S. A., Soetan, S. B., Ongbali, S. O., Abioye, A. A., & Oni, A. S. (2019). Morphological characterization and physio-chemical properties of nanoparticle-review. In Proceedings of the IOP Conference Series: Materials Science and Engineering (Vol. 640, No. 1, pp. 012065). IOP Publishing.

  80. Ashik, U., Kudo, S., & Hayashi, J. I. (2018). An overview of metal oxide nanostructures. Synthesis of Inorganic Nanomaterials, 2, 19–57.

  81. Pearce, A. K., Wilks, T. R., Arno, M. C., & O’Reilly, R. K. (2021). Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nature Reviews Chemistry, 5, 21–45.

    Article  Google Scholar 

  82. Gupta, S. K., & Mao, Y. (2021). A review on molten salt synthesis of metal oxide nanomaterials: Status, opportunity, and challenge. Progress in Materials Science, 117, 100734.

    Article  Google Scholar 

  83. Singh, J., Dutta, T., Kim, K.-H., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology, 16, 1–24.

    Article  Google Scholar 

  84. Mendoza Lescano, L. M. (2021). Semiconductor nanoparticles. A review on recent advances in green chemistry synthesis and their application in imaging, 640, 012065.

  85. Prześniak-Welenc, M., Łapiński, M., Lewandowski, T., Kościelska, B., Wicikowski, L., & Sadowski, W. (2015). The influence of thermal conditions on V2O5 nanostructures prepared by sol-gel method. Journal of Nanomaterials, 2015, 418024.

    Article  Google Scholar 

  86. Rasheed, P., Haq, S., Waseem, M., Rehman, S. U., Rehman, W., Bibi, N., & Shah, S. A. A. (2020). Green synthesis of vanadium oxide-zirconium oxide nanocomposite for the degradation of methyl orange and picloram. Materials Research Express, 7, 025011.

    Article  Google Scholar 

  87. Mariotti, N., Bonomo, M., Fagiolari, L., Barbero, N., Gerbaldi, C., Bella, F., & Barolo, C. (2020). Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chemistry, 22, 7168–7218.

    Article  Google Scholar 

  88. Madkour, L. H. (2017). Ecofriendly green biosynthesized of metallic nanoparticles: Bio-reduction mechanism, characterization and pharmaceutical applications in biotechnology industry. Drugs and Therapy, 3, 1–11.

    Google Scholar 

  89. Kanchi, S., & Ahmed, S. (2018). Green metal nanoparticles: Synthesis, characterization and their applications. Wiley.

    Book  Google Scholar 

  90. Kumar, J. A., Krithiga, T., Manigandan, S., Sathish, S., Renita, A. A., Prakash, P., Prasad, B. N., Kumar, T. P., Rajasimman, M., & Hosseini-Bandegharaei, A. (2021). A focus to green synthesis of metal/metal based oxide nanoparticles: Various mechanisms and applications towards ecological approach. Journal of Cleaner Production, 324, 129198.

    Article  Google Scholar 

  91. Kianfar, E. (2019). Recent advances in synthesis, properties, and applications of vanadium oxide nanotube. Microchemical Journal, 145, 966–978.

    Article  Google Scholar 

  92. Kianfar, E., Baghernejad, M., & Rahimdashti, Y. (2015). Study synthesis of vanadium oxide nanotubes with two template hexadecylamin and hexylamine. In Proceedings of the Biological Forum (Vol. 7, No. 1, pp. 1671). Research Trend.

  93. El-Seedi, H. R., El-Shabasy, R. M., Khalifa, S. A., Saeed, A., Shah, A., Shah, R., Iftikhar, F. J., Abdel-Daim, M. M., Omri, A., & Hajrahand, N. H. (2019). Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications. RSC Advances, 9, 24539–24559.

    Article  Google Scholar 

  94. Ahghari, M. R., Soltaninejad, V., & Maleki, A. (2020). Synthesis of nickel nanoparticles by a green and convenient method as a magnetic mirror with antibacterial activities. Scientific Reports, 10, 12627.

    Article  Google Scholar 

  95. Rónavári, A., Igaz, N., Adamecz, D. I., Szerencsés, B., Molnar, C., Kónya, Z., Pfeiffer, I., & Kiricsi, M. (2021). Green silver and gold nanoparticles: Biological synthesis approaches and potentials for biomedical applications. Molecules, 26, 844.

    Article  Google Scholar 

  96. Drummer, S., Madzimbamuto, T., & Chowdhury, M. (2021). Green synthesis of transition-metal nanoparticles and their oxides: A review. Materials, 14, 2700.

    Article  Google Scholar 

  97. Vanlalveni, C., Lallianrawna, S., Biswas, A., Selvaraj, M., Changmai, B., & Rokhum, S. L. (2021). Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Advances, 11, 2804–2837.

    Article  Google Scholar 

  98. Vaseghi, Z., Nematollahzadeh, A., & Tavakoli, O. (2018). Green methods for the synthesis of metal nanoparticles using biogenic reducing agents: A review. Reviews in Chemical Engineering, 34, 529–559.

    Article  Google Scholar 

  99. Shad, A. A., & Shad, W. A. (2019). Review of green synthesis and antimicrobial efficacy of copper and nickel nanoparticles. American Journal of Biomedical Science and Research, 3, 000721.

    Google Scholar 

  100. Jaji, N.-D., Lee, H. L., Hussin, M. H., Akil, H. M., Zakaria, M. R., & Othman, M. B. H. (2020). Advanced nickel nanoparticles technology: From synthesis to applications. Nanotechnology Reviews, 9, 1456–1480.

    Article  Google Scholar 

  101. Verma, C., Ebenso, E. E., & Quraishi, M. (2019). Transition metal nanoparticles in ionic liquids: Synthesis and stabilization. Journal of Molecular Liquids, 276, 826–849.

    Article  Google Scholar 

  102. Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A. L., Galindo, R., Cano, A., Espina, M., Ettcheto, M., & Camins, A. (2020). Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials, 10, 292.

    Article  Google Scholar 

  103. Sudhasree, S., Shakila Banu, A., Brindha, P., & Kurian, G. A. (2014). Synthesis of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity. Toxicological & Environmental Chemistry, 96, 743–754.

    Article  Google Scholar 

  104. Chen, H., Wang, J., Huang, D., Chen, X., Zhu, J., Sun, D., Huang, J., & Li, Q. (2014). Plant-mediated synthesis of size-controllable Ni nanoparticles with alfalfa extract. Materials Letters, 122, 166–169.

    Article  Google Scholar 

  105. Elango, G., Roopan, S. M., Dhamodaran, K. I., Elumalai, K., Al-Dhabi, N. A., & Arasu, M. V. (2016). Spectroscopic investigation of biosynthesized nickel nanoparticles and its larvicidal, pesticidal activities. Journal of Photochemistry and Photobiology B: Biology, 162, 162–167.

    Article  Google Scholar 

  106. Bibi, I., Kamal, S., Ahmed, A., Iqbal, M., Nouren, S., Jilani, K., Nazar, N., Amir, M., Abbas, A., & Ata, S. (2017). Nickel nanoparticle synthesis using Camellia Sinensis as reducing and cap** agent: Growth mechanism and photo-catalytic activity evaluation. International Journal of Biological Macromolecules, 103, 783–790.

    Article  Google Scholar 

  107. Din, M. I., Nabi, A. G., Rani, A., Aihetasham, A., & Mukhtar, M. (2018). Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantea: Catalytic and antimicrobial potentials. Environmental Nanotechnology, Monitoring & Management., 9, 29–36.

    Article  Google Scholar 

  108. Kiran, S., Rafique, M. A., Iqbal, S., Nosheen, S., Naz, S., & Rasheed, A. (2020). Synthesis of nickel nanoparticles using Citrullus colocynthis stem extract for remediation of Reactive Yellow 160 dye. Environmental Science and Pollution Research, 27, 32998–33007.

    Article  Google Scholar 

  109. Huang, Y., Zhu, C., **e, R., & Ni, M. (2021). Green synthesis of nickel nanoparticles using Fumaria officinalis as a novel chemotherapeutic drug for the treatment of ovarian cancer. Journal of Experimental Nanoscience, 16, 368–381.

    Article  Google Scholar 

  110. Recep, T., Köroğlu, E., & Celebioglu, H. U. (2021). Green synthesis of nickel nanoparticles using Peumus Boldus Koch. Extract and antibacterial activity. International Journal of Innovative Engineering Applications, 5, 152–155.

    Article  Google Scholar 

  111. Vodyashkin, A., Stoinova, A., & Kezimana, P. (2024). Promising biomedical systems based on copper nanoparticles: Synthesis, characterization, and applications. Colloids and Surfaces B: Biointerfaces, 237, 113861.

    Article  Google Scholar 

  112. Nieto-Maldonado, A., Bustos-Guadarrama, S., Espinoza-Gomez, H., Flores-López, L. Z., Ramirez-Acosta, K., Alonso-Nuñez, G., & Cadena-Nava, R. D. (2022). Green synthesis of copper nanoparticles using different plant extracts and their antibacterial activity. Journal of Environmental Chemical Engineering, 10, 107130.

    Article  Google Scholar 

  113. Muhammad, A., Umar, A., Birnin-Yauri, A., Sanni, H. A., AR, I., & Elinge, C. (2022). Effect of process variables on green synthesis of copper nanoparticles from solanum lycopersicum and Psidium guajava and its antibacterial activities, 10(1), 17–23.

  114. Tokarek, K., Hueso, J. L., Kuśtrowski, P., Stochel, G., & Kyzioł, A. (2013). Green synthesis of chitosan-stabilized copper nanoparticles. European Journal of Inorganic Chemistry, 2013, 4940–4947.

    Article  Google Scholar 

  115. Garousi, F. (2017). The essentiality of selenium for humans, animals, and plants, and the role of selenium in plant metabolism and physiology. Acta Universitatis Sapientiae, Alimentaria, 10, 75–90.

    Article  Google Scholar 

  116. Hariharan, S., & Dharmaraj, S. (2020). Selenium and selenoproteins: It’s role in regulation of inflammation. Inflammopharmacology, 28, 667–695.

    Article  Google Scholar 

  117. Fernández-Llamosas, H., Castro, L., Blázquez, M. L., Díaz, E., & Carmona, M. (2016). Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB. Microbial Cell Factories, 15, 1–10.

    Article  Google Scholar 

  118. Tóth, R. J., & Csapó, J. (2018). The role of selenium in nutrition—A review. Acta Universitatis Sapientiae, Alimentaria, 11, 128–144.

    Article  Google Scholar 

  119. Wadhwani, S. A., Shedbalkar, U. U., Singh, R., & Chopade, B. A. (2016). Biogenic selenium nanoparticles: Current status and future prospects. Applied Microbiology and Biotechnology, 100, 2555–2566.

    Article  Google Scholar 

  120. Mahapatra, D. K., Haldar, A. G., & Dadure, K. M. (2022). Biogenic sustainable nanotechnology (pp. 217–226). Elsevier.

    Book  Google Scholar 

  121. Kapoor, R. T., Salvadori, M. R., Rafatullah, M., Siddiqui, M. R., Khan, M. A., & Alshareef, S. A. (2021). Exploration of microbial factories for synthesis of nanoparticles–A sustainable approach for bioremediation of environmental contaminants. Frontiers in Microbiology, 12, 658294.

    Article  Google Scholar 

  122. Alagesan, V., & Venugopal, S. (2019). Green synthesis of selenium nanoparticle using leaves extract of withania somnifera and its biological applications and photocatalytic activities. Bionanoscience, 9, 105–116.

    Article  Google Scholar 

  123. Cittrarasu, V., Kaliannan, D., Dharman, K., Maluventhen, V., Easwaran, M., Liu, W. C., Balasubramanian, B., & Arumugam, M. (2021). Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Science and Reports, 11, 1032.

    Article  Google Scholar 

  124. Cittrarasu, V., Kaliannan, D., Dharman, K., Maluventhen, V., Easwaran, M., Liu, W. C., Balasubramanian, B., & Arumugam, M. (2021). Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Scientific Reports, 11, 1–15.

    Article  Google Scholar 

  125. Macaskie, L. E., Mikheenko, I. P., Omajai, J. B., Stephen, A. J., & Wood, J. (2017). Metallic bionanocatalysts: Potential applications as green catalysts and energy materials. Microbial Biotechnology, 10, 1171–1180.

    Article  Google Scholar 

  126. Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156, 1–13.

    Article  Google Scholar 

  127. Negui, M., Zhang, Z., Foucher, C., Guénin, E., Richel, A., Jeux, V., & Terrasson, V. (2022). Wood-sourced polymers as support for catalysis by group 10 transition metals. Processes, 10, 345.

    Article  Google Scholar 

  128. Zhang, Z., Lefebvre, C., Somerville, S. V., Tilley, R. D., Guénin, E., & Terrasson, V. (2024). Pd nanoparticles embedded in nanolignin (Pd@ LNP) as a water dispersible catalytic nanoreactor for Cr (VI), 4-nitrophenol reduction and CC coupling reactions. International Journal of Biological Macromolecules, 254, 127695.

    Article  Google Scholar 

  129. Zhang, Z., Negui, M., Guénin, E., Terrasson, V., & Jeux, V. (2023). Nanomaterials from renewable resources for emerging applications (pp. 181–213). CRC Press.

    Google Scholar 

  130. Joudeh, N., Saragliadis, A., Koster, G., Mikheenko, P., & Linke, D. (2022). Synthesis methods and applications of palladium nanoparticles: A review. Frontiers in Nanotechnology, 4, 1062608.

    Article  Google Scholar 

  131. Phan, T. T. V., Huynh, T.-C., Manivasagan, P., Mondal, S., & Oh, J. (2019). An up-to-date review on biomedical applications of palladium nanoparticles. Nanomaterials, 10, 66.

    Article  Google Scholar 

  132. Puja, P., & Kumar, P. (2019). A perspective on biogenic synthesis of platinum nanoparticles and their biomedical applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 211, 94–99.

    Article  Google Scholar 

  133. Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., & Sastry, M. (2005). Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. Journal of Biomedical Nanotechnology, 1, 47–53.

    Article  Google Scholar 

  134. Khanna, P., Kaur, A., & Goyal, D. (2019). Algae-based metallic nanoparticles: Synthesis, characterization and applications. Journal of Microbiological Methods, 163, 105656.

    Article  Google Scholar 

  135. Fahmy, S. A., Preis, E., Bakowsky, U., & Azzazy, H.M.E.-S. (2020). Palladium nanoparticles fabricated by green chemistry: Promising chemotherapeutic, antioxidant and antimicrobial agents. Materials, 13, 3661.

    Article  Google Scholar 

  136. Mandal, D., Bolander, M. E., Mukhopadhyay, D., Sarkar, G., & Mukherjee, P. (2006). The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Biotechnology, 69, 485–492.

    Article  Google Scholar 

  137. Vinodhini, S., Vithiya, B. S. M., & Prasad, T. A. A. (2022). Green synthesis of palladium nanoparticles using aqueous plant extracts and its biomedical applications. Journal of King Saud University-Science, 34, 102017.

    Article  Google Scholar 

  138. Piermatti, O. (2021). Green synthesis of Pd nanoparticles for sustainable and environmentally benign processes. Catalysts, 11, 1258.

    Article  Google Scholar 

  139. Vijilvani, C., Bindhu, M., Frincy, F., AlSalhi, M. S., Sabitha, S., Saravanakumar, K., Devanesan, S., Umadevi, M., Aljaafreh, M. J., & Atif, M. (2020). Antimicrobial and catalytic activities of biosynthesized gold, silver and palladium nanoparticles from Solanum nigurum leaves. Journal of Photochemistry and Photobiology B: Biology, 202, 111713.

    Article  Google Scholar 

  140. Vaghela, H., Shah, R., & Pathan, A. (2018). Palladium nanoparticles mediated through bauhinia variegata: Potent in vitro anticancer activity against mcf-7 cell lines and antimicrobial assay. Current Nanomaterials, 3, 168–177.

    Article  Google Scholar 

  141. Nadagouda, M. N., & Varma, R. S. (2008). Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chemistry, 10, 859–862.

    Article  Google Scholar 

  142. Ismail, E., Khenfouch, M., Dhlamini, M., Dube, S., & Maaza, M. (2017). Green palladium and palladium oxide nanoparticles synthesized via Aspalathus linearis natural extract. Journal of Alloys and Compounds, 695, 3632–3638.

    Article  Google Scholar 

  143. Du, J., Abdulkreem Al-Huqail, A., Cao, Y., Yao, H., Sun, Y., Garaleh, M., El Sayed Massoud, E., Ali, E., Asilzade, H., & Escorcia-Gutierrez, J. (2024). Green synthesis of zinc oxide nanoparticles from Sida acuta leaf extract for antibacterial and antioxidant applications, and catalytic degradation of dye through the use of convolutional neural network. Environmental Research, 119204, 0013–9351.

  144. Álvarez-Chimal, R., García-Pérez, V. I., Álvarez-Pérez, M. A., & Arenas-Alatorre, J. Á. (2021). Green synthesis of ZnO nanoparticles using a Dysphania ambrosioides extract. Structural characterization and antibacterial properties. Materials Science and Engineering: C, 118, 111540.

    Article  Google Scholar 

  145. Naiel, B., Fawzy, M., Halmy, M. W. A., & Mahmoud, A. E. D. (2022). Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: Characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Scientific Reports, 12, 20370.

    Article  Google Scholar 

  146. Ramesh, M., Anbuvannan, M., & Viruthagiri, G. (2015). Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 864–870.

    Article  Google Scholar 

  147. Aalami, Z., Hoseinzadeh, M., Hosseini Manesh, P., Aalami, A. H., Es’haghi, Z., Darroudi, M., Sahebkar, A., & Hosseini, H. A. (2024). Synthesis, characterization, and photocatalytic activities of green sol-gel ZnO nanoparticles using Abelmoschus esculentus and Salvia officinalis: A comparative study versus co-precipitation-synthesized nanoparticles. Heliyon, 10, e24212.

    Article  Google Scholar 

  148. Ahir, P., Maurya, I. K., Jain, R., & Kumar, S. (2024). Photocatalytic and antimicrobial studies of green synthesized Dy3+doped ZnO nanoparticles prepared from Rhododendron arboreum petal extract. Chemical Physics Impact, 8, 100461.

    Article  Google Scholar 

  149. Pham, P.-Q., Duong, T. B. N., Le, N. Q. N., Pham, A. T. T., Nguyen, T. T., Phan, T. B., Nguyen, L. M. T., & Pham, N. K. (2024). Synaptic behavior in analog memristors based on green-synthesized ZnO nanoparticles. Ceramics International, 50(16), 28480–28489.

  150. Joshi, R., Khandelwal, A., Shrivastava, M., & Singh, S. (2020). Soil analysis: Recent trends and applications (pp. 187–198). Springer.

    Book  Google Scholar 

  151. Raval, N., Maheshwari, R., Kalyane, D., Youngren-Ortiz, S., Chougule, M., & Tekade, R. (2019). Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. In Basic fundamentals of drug delivery (Vol. 10, pp. 369-400). Academic Press.

  152. Pandian, C. J., Palanivel, R., & Dhananasekaran, S. (2015). Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. Chinese Journal of Chemical Engineering, 23, 1307–1315.

    Article  Google Scholar 

  153. Joudeh, N., & Linke, D. (2022). Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. Journal of Nanobiotechnology, 20, 262.

    Article  Google Scholar 

  154. Kumar, A., & Dixit, C. K. (2017). Advances in nanomedicine for the delivery of therapeutic nucleic acids (pp. 43–58). Elsevier.

    Book  Google Scholar 

  155. Ali, A., Chiang, Y. W., & Santos, R. M. (2022). X-ray diffraction techniques for mineral characterization: A review for engineers of the fundamentals, applications, and research directions. Minerals, 12, 205.

    Article  Google Scholar 

  156. Liu, J. (2005). Scanning transmission electron microscopy and its application to the study of nanoparticles and nanoparticle systems. Journal of Electron Microscopy, 54, 251–278.

    Article  Google Scholar 

  157. Vladár, A. E., & Hodoroaba, V.-D. (2020) Characterization of nanoparticles - Measurement processes for nanoparticles, Edited by V.-D.Hodoroaba, W. Unger and A. G. Shard, Elsevier.

  158. Wadhwani, S. A., Gorain, M., Banerjee, P., Shedbalkar, U. U., Singh, R., Kundu, G. C., & Chopade, B. A. (2017). Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: Optimization, characterization and its anticancer activity in breast cancer cells. International Journal of Nanomedicine, 12, 6841.

    Article  Google Scholar 

  159. Alipour, S., Kalari, S., Morowvat, M. H., Sabahi, Z., & Dehshahri, A. (2021). Green synthesis of selenium nanoparticles by cyanobacterium Spirulina platensis (abdf2224): Cultivation condition quality controls. BioMed Research International, 2021, 6635297.

    Article  Google Scholar 

  160. Husen, A., & Siddiqi, K. S. (2014). Plants and microbes assisted selenium nanoparticles: Characterization and application. Journal of Nanobiotechnology, 12, 1–10.

    Article  Google Scholar 

  161. Srivastava, N., & Mukhopadhyay, M. (2013). Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technology, 244, 26–29.

    Article  Google Scholar 

  162. Sapsford, K. E., Tyner, K. M., Dair, B. J., Deschamps, J. R., & Medintz, I. L. (2011). Analyzing nanomaterial bioconjugates: A review of current and emerging purification and characterization techniques. Analytical Chemistry, 83, 4453–4488.

    Article  Google Scholar 

  163. Tomaszewska, E., Soliwoda, K., Kadziola, K., Tkacz-Szczesna, B., Celichowski, G., Cichomski, M., Szmaja, W., & Grobelny, J. (2013). Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. Journal of Nanomaterials, 2013, 313081.

    Article  Google Scholar 

  164. Ramamurthy, C., Sampath, K., Arunkumar, P., Kumar, M. S., Sujatha, V., Premkumar, K., & Thirunavukkarasu, C. (2013). Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess and Biosystems Engineering, 36, 1131–1139.

    Article  Google Scholar 

  165. Alam, H., Khatoon, N., Raza, M., Ghosh, P. C., & Sardar, M. (2019). Synthesis and characterization of nano selenium using plant biomolecules and their potential applications. BioNanoScience, 9, 96–104.

    Article  Google Scholar 

  166. Ahmed, M., Mansour, S., Mostafa, M. S., Darwesh, R., & El-Dek, S. (2019). Structural, mechanical and thermal features of Bi and Sr co-substituted hydroxyapatite. Journal of Materials Science, 54, 1977–1991.

    Article  Google Scholar 

  167. Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. (2018). Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10, 12871–12934.

    Article  Google Scholar 

  168. Quevedo, A. C., Guggenheim, E., Briffa, S. M., Adams, J., Lofts, S., Kwak, M., Lee, T. G., Johnston, C., Wagner, S., & Holbrook, T. R. (2021). UV-Vis spectroscopic characterization of nanomaterials in aqueous media, 176, e61764.

  169. Skoog, D. A., Holler, F. J., & Crouch, S. R. (2017). Principles of instrumental analysis. Cengage learning, 7, 1337468037.

  170. Hendel, T., Wuithschick, M., Kettemann, F., Birnbaum, A., Rademann, K., & Polte, J. R. (2014). In situ determination of colloidal gold concentrations with UV–Vis spectroscopy: Limitations and perspectives. Analytical Chemistry, 86, 11115–11124.

    Article  Google Scholar 

  171. Abd Elkader, R. S., Mohamed, M. K., Hasanien, Y. A., & Kandeel, E. M. (2023). Experimental and modeling optimization of strontium adsorption on microbial nanocellulose, eco-friendly approach. Journal of Cluster Science, 34, 3147–3163.

    Article  Google Scholar 

  172. Modena, M. M., Rühle, B., Burg, T. P., & Wuttke, S. (2019). Nanoparticle characterization: What to measure? Advanced Materials, 31, 1901556.

    Article  Google Scholar 

  173. Li, Z., Wang, Y., Shen, J., Liu, W., & Sun, X. (2014). The measurement system of nanoparticle size distribution from dynamic light scattering data. Optics and Lasers in Engineering, 56, 94–98.

    Article  Google Scholar 

  174. Tripathi, R., Gupta, R. K., Shrivastav, A., Singh, M., Shrivastav, B., & Singh, P. (2013). Trichoderma koningii assisted biogenic synthesis of silver nanoparticles and evaluation of their antibacterial activity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4, 035005.

    Google Scholar 

  175. Roy, K., Sarkar, C., & Ghosh, C. (2015). Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Applied Nanoscience, 5, 953–959.

    Article  Google Scholar 

  176. Vladár, A. E., & Hodoroaba, V.-D. (2020). Characterization of nanoparticles (pp. 7–27). Elsevier.

    Book  Google Scholar 

  177. Khan, I., Saeed, K., & Khan, I. (2019). Review nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12, 908–931.

    Article  Google Scholar 

  178. Hodoroaba, V. D., Rades, S., & Unger, W. E. (2014). Inspection of morphology and elemental imaging of single nanoparticles by high-resolution SEM/EDX in transmission mode. Surface and Interface Analysis, 46, 945–948.

    Article  Google Scholar 

  179. Al-Majeed, S. H. A., Al-Ali, Z. S. A., & Turki, A. A. (2023). Biomedical Assessment of silver nanoparticles derived from l-aspartic acid against breast cancer cell lines and bacteria strains. BioNanoScience, 13(4), 1833–1848.‏

  180. Ghabban, H., Alnomasy, S. F., Almohammed, H., Al Idriss, O. M., Rabea, S., & Eltahir, Y. (2022). Antibacterial, cytotoxic, and cellular mechanisms of green synthesized silver nanoparticles against some cariogenic bacteria (Streptococcus mutans and Actinomyces viscosus). Journal of Nanomaterials, 2022, 9721736.

    Article  Google Scholar 

  181. Hamad, M. (2019). Biosynthesis of silver nanoparticles by fungi and their antibacterial activity. International Journal of Environmental Science and Technology, 16, 1015–1024.

    Article  Google Scholar 

  182. Mashwani, Z.-U.-R., Khan, T., Khan, M. A., & Nadhman, A. (2015). Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: Current status and future prospects. Applied Microbiology and Biotechnology, 99, 9923–9934.

    Article  Google Scholar 

  183. Alaqad, K., & Saleh, T. A. (2016). Gold and silver nanoparticles: Synthesis methods, characterization routes and applications towards drugs. Journal of Environmental & Analytical Toxicology, 6, 525–2161.

    Article  Google Scholar 

  184. van Wageningen-Kessels, F., Van Lint, H., Vuik, K., & Hoogendoorn, S. (2015). Genealogy of traffic flow models. EURO Journal on Transportation and Logistics, 4, 445–473.

    Article  Google Scholar 

  185. Palithya, S., Gaddam, S. A., Kotakadi, V. S., Penchalaneni, J., Golla, N., Krishna, S. B. N., & Naidu, C. (2022). Green synthesis of silver nanoparticles using flower extracts of Aerva lanata and their biomedical applications. Particulate Science and Technology, 40, 84–96.

    Article  Google Scholar 

  186. Sikora, A., Bartczak, D., Geißler, D., Kestens, V., Roebben, G., Ramaye, Y., Varga, Z., Palmai, M., Shard, A. G., & Goenaga-Infante, H. (2015). A systematic comparison of different techniques to determine the zeta potential of silica nanoparticles in biological medium. Analytical Methods, 7, 9835–9843.

    Article  Google Scholar 

  187. Gavade, N., Kadam, A., Suwarnkar, M., Ghodake, V., & Garadkar, K. (2015). Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 953–960.

    Article  Google Scholar 

  188. Edison, T. J. I., & Sethuraman, M. (2013). Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 104, 262–264.

    Article  Google Scholar 

  189. Mondal, O. (2022). Microstructure, optical and electrical properties of Cu-Cu 2 O core-shell nanostructures. Journal of Scientific Research, 14, 831–842.

    Article  Google Scholar 

  190. Wang, Y., Zhang, Q., Wang, Y., Besteiro, L. V., Liu, Y., Tan, H., Wang, Z. M., Govorov, A. O., Zhang, J. Z., & Cooper, J. K. (2020). Ultrastable plasmonic Cu-based core–shell nanoparticles. Chemistry of Materials, 33, 695–705.

    Article  Google Scholar 

  191. Mou, Y., Liu, J., Cheng, H., Peng, Y., & Chen, M. (2019). Facile preparation of self-reducible Cu nanoparticle paste for low temperature Cu-Cu bonding. JOM Journal of the Minerals Metals and Materials Society, 71, 3076–3083.

    Article  Google Scholar 

  192. Brook, B. W., & Bradshaw, C. J. (2015). Key role for nuclear energy in global biodiversity conservation. Conservation Biology, 29, 702–712.

    Article  Google Scholar 

  193. Tetgure, S. R., Choudhary, B. C., Garole, D. J., Borse, A. U., Sawant, A. D., & Prasad, S. (2017). Novel extractant impregnated resin for preconcentration and determination of uranium from environmental samples. Microchemical Journal, 130, 442–451.

    Article  Google Scholar 

  194. González-Muñoz, M. J., Rodríguez, M. A., Luque, S., & Álvarez, J. R. (2006). Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration. Desalination, 200, 742–744.

    Article  Google Scholar 

  195. Ramadevi, G., Sreenivas, T., Navale, A., & Padmanabhan, N. (2012). Solvent extraction of uranium from lean grade acidic sulfate leach liquor with alamine 336 reagent. Journal of Radioanalytical and Nuclear Chemistry, 294, 13–18.

    Article  Google Scholar 

  196. Hellé, G., Mariet, C., & Cote, G. (2015). Liquid–liquid extraction of uranium (VI) with Aliquat® 336 from HCl media in microfluidic devices: Combination of micro-unit operations and online ICP-MS determination. Talanta, 139, 123–131.

    Article  Google Scholar 

  197. Reinoso-Maset, E., & Ly, J. (2016). Study of uranium (VI) and radium (II) sorption at trace level on kaolinite using a multisite ion exchange model. Journal of Environmental Radioactivity, 157, 136–148.

    Article  Google Scholar 

  198. Li, J. Q., Feng, X. F., Zhang, L., Wu, H. Q., Yan, C. S., **ong, Y. Y., Gao, H. Y., & Luo, F. (2017). Direct extraction of U (VI) from alkaline solution and seawater via anion exchange by metal-organic framework. Chemical Engineering Journal, 316, 154–159.

    Article  Google Scholar 

  199. Namasivayam, C., & Sangeetha, D. (2006). Recycling of agricultural solid waste, coir pith: Removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon. Journal of Hazardous Materials, 135, 449–452.

    Article  Google Scholar 

  200. Sudilovskiy, P., Kagramanov, G., Trushin, A., & Kolesnikov, V. (2007). Use of membranes for heavy metal cationic wastewater treatment: Flotation and membrane filtration. Clean Technologies and Environmental Policy, 9, 189–198.

    Article  Google Scholar 

  201. Tran, T. K., Leu, H. J., Chiu, K. F., & Lin, C. Y. (2017). Electrochemical treatment of heavy metal-containing wastewater with the removal of COD and heavy metal ions. Journal of the Chinese Chemical Society, 64, 493–502.

    Article  Google Scholar 

  202. Yang, J., Hou, B., Wang, J., Tian, B., Bi, J., Wang, N., Li, X., & Huang, X. (2019). Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials, 9, 424.

    Article  Google Scholar 

  203. Dickinson, M., & Scott, T. B. (2010). The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. Journal of Hazardous Materials, 178, 171–179.

    Article  Google Scholar 

  204. Zaki, A. G., Hasanien, Y. A., & Abdel-Razek, A. S. (2022). Biosorption optimization of lead (II) and cadmium (II) ions by two novel nanosilica-immobilized fungal mutants. Journal of Applied Microbiology, 133, 987–1000.

    Article  Google Scholar 

  205. Ling, L., & Zhang, W.-X. (2015). Enrichment and encapsulation of uranium with iron nanoparticle. Journal of the American Chemical Society, 137, 2788–2791.

    Article  Google Scholar 

  206. Helal, A. A., Ahmed, I., Gamal, R., Abo-El-Enein, S., & Helal, A. (2022). Sorption of uranium (VI) from aqueous solution using nanomagnetite particles; with and without humic acid coating. Journal of Radioanalytical and Nuclear Chemistry, 331, 3005–3014.

    Article  Google Scholar 

  207. Zhang, Q., Zhao, D., Ding, Y., Chen, Y., Li, F., Alsaedi, A., Hayat, T., & Chen, C. (2019). Synthesis of Fe–Ni/graphene oxide composite and its highly efficient removal of uranium (VI) from aqueous solution. Journal of Cleaner Production, 230, 1305–1315.

    Article  Google Scholar 

  208. Abdeen, D. H., El Hachach, M., Koc, M., & Atieh, M. A. (2019). A review on the corrosion behaviour of nanocoatings on metallic substrates. Materials, 12, 210.

    Article  Google Scholar 

  209. Baena, L., Gómez, M., & Calderón, J. (2012). Aggressiveness of a 20% bioethanol–80% gasoline mixture on autoparts: I behavior of metallic materials and evaluation of their electrochemical properties. Fuel, 95, 320–328.

    Article  Google Scholar 

  210. Deyab, M., Eddahaoui, K., Essehli, R., Rhadfi, T., Benmokhtar, S., & Mele, G. (2016). Experimental evaluation of new inorganic phosphites as corrosion inhibitors for carbon steel in saline water from oil source wells. Desalination, 383, 38–45.

    Article  Google Scholar 

  211. Deyab, M. (2013). Effect of halides ions on H2 production during aluminum corrosion in formic acid and using some inorganic inhibitors to control hydrogen evolution. Journal of Power Sources, 242, 86–90.

    Article  Google Scholar 

  212. Cragnolino, G. A. (2021). Techniques for corrosion monitoring (pp. 7–42). Elsevier.

    Book  Google Scholar 

  213. Victoria, S. N., Sharma, A., & Manivannan, R. (2021). Metal corrosion induced by microbial activity–mechanism and control options. Journal of the Indian Chemical Society, 98, 100083.

    Article  Google Scholar 

  214. Hasanien, Y. A., Mosleh, M. A., Abdel-Razek, A. S., El-Sayyad, G. S., El-Hakim, E. H., & Borai, E. H. (2023). Green synthesis of SiO2 nanoparticles from Egyptian white sand using submerged and solid-state culture of fungi. Biomass Conversion and Biorefinery, 1–14. https://doi.org/10.1007/s13399-023-04586-y

  215. Jia, R., Unsal, T., Xu, D., Lekbach, Y., & Gu, T. (2019). Microbiologically influenced corrosion and current mitigation strategies: A state of the art review. International Biodeterioration & Biodegradation, 137, 42–58.

    Article  Google Scholar 

  216. Popoola, L. T. (2019). Organic green corrosion inhibitors (OGCIs): A critical review. Corrosion Reviews, 37, 71–102.

    Article  Google Scholar 

  217. Lv, M., & Du, M. (2018). A review: Microbiologically influenced corrosion and the effect of cathodic polarization on typical bacteria. Reviews in Environmental Science and Bio/Technology, 17, 431–446.

    Article  Google Scholar 

  218. Thaysen, E. M., McMahon, S., Strobel, G. J., Butler, I. B., Ngwenya, B. T., Heinemann, N., Wilkinson, M., Hassanpouryouzband, A., McDermott, C. I., & Edlmann, K. (2021). Estimating microbial growth and hydrogen consumption in hydrogen storage in porous media. Renewable and Sustainable Energy Reviews, 151, 111481.

    Article  Google Scholar 

  219. Hu, Y., **ao, K., Yan, L., Hao, X., Huang, L., & Lou, Y. (2022). Effect of Fungus, Aspergillus sp. F1–1, on the corrosion behavior of PCB-HASL in humid atmospheric environment. Surface Topography: Metrology and Properties, 10, 015022.

    Google Scholar 

  220. Jirón-Lazos, U., Corvo, F., De la Rosa, S., García-Ochoa, E., Bastidas, D. M., & Bastidas, J. (2018). Localized corrosion of aluminum alloy 6061 in the presence of Aspergillus niger. International Biodeterioration & Biodegradation, 133, 17–25.

    Article  Google Scholar 

  221. Wang, S., Zhao, X., Rong, H., Wang, X., Yang, J., Ding, R., Fan, W., & Zhang, Y. (2022). Role of Lysinibacillus sphaericus on aviation kerosene degradation and corrosion of 7B04 aluminum alloy. Journal of Materials Research and Technology, 18, 2641–2653.

    Article  Google Scholar 

  222. El Hachach, M., Koc, M., Abdeen, D. H., & Atieh, M. A. (2019). A review on the corrosion behaviour of nanocoatings on metallic substrates. Materials (1996-1944), 12, 210.

    Google Scholar 

  223. Dariva, C. G., & Galio, A. F. (2014). Corrosion inhibitors–principles, mechanisms and applications. Developments in Corrosion Protection, 16, 365–378.

    Google Scholar 

  224. Keçili, R., Hussain, C. G., & Hussain, C. M. (2022).  Anticorrosive nanomaterials: Corrosion applications of nanomaterials (NMs). The Royal Society of Chemistry, 1, 1–14.

  225. Hulin, H., Shimou, Y., & Fawad, A. (2019). Effect of nano-coating on corrosion behaviors of DCLL blanket channel. International Journal of Heat and Mass Transfer, 141, 444–456.

    Article  Google Scholar 

  226. Deyab, M., Nada, A. A., & Hamdy, A. (2017). Comparative study on the corrosion and mechanical properties of nano-composite coatings incorporated with TiO2 nano-particles, TiO2 nano-tubes, and ZnO nano-flowers. Progress in Organic Coatings, 105, 245–251.

    Article  Google Scholar 

  227. Mirhashemihaghighi, S., Światowska, J., Maurice, V., Seyeux, A., Klein, L. H., Salmi, E., Ritala, M., & Marcus, P. (2016). The role of surface preparation in corrosion protection of copper with nanometer-thick ALD alumina coatings. Applied Surface Science, 387, 1054–1061.

    Article  Google Scholar 

  228. Rajendran, S., Nguyen, T. A., Kakooei, S., Yeganeh, M., & Li, Y. (2020). Corrosion protection at the nanoscale. Elsevier.

    Google Scholar 

  229. Schrand, A., Rahman, M., Hussain, S., Schlager, J., Smith, D., & Syed, A. (2010). Metal‐based nanoparticles and their toxicity assessment. Wiley interdisciplinary reviews: Nanomedicine and Nanobiotechnology,  2(5), 544–568.

  230. Bordbar, S., Rezaeizadeh, M., & Kavian, A. (2020). Improving thermal conductivity and corrosion resistance of polyurea coating on internal tubes of gas heater by nano silver. Progress in Organic Coatings, 146, 105722.

    Article  Google Scholar 

  231. Badi, N., Khasim, S., Pasha, A., Alatawi, A. S., & Lakshmi, M. (2020). Silver nanoparticles intercalated polyaniline composites for high electrochemical anti-corrosion performance in 6061 aluminum alloy-based solar energy frameworks. Journal of Bio-and Tribo-Corrosion, 6, 1–9.

    Article  Google Scholar 

  232. Ituen, E., Ekemini, E., Yuanhua, L., Li, R., & Singh, A. (2020). Mitigation of microbial biodeterioration and acid corrosion of pipework steel using Citrus reticulata peels extract mediated copper nanoparticles composite. International Biodeterioration & Biodegradation, 149, 104935.

    Article  Google Scholar 

  233. Ituen, E., Singh, A., Yuanhua, L., & Li, R. (2020). Synthesis and evaluation of anticorrosion properties of onion mesocarp-nickel nanocomposites on X80 steel in acidic cleaning solution. Journal of Materials Research and Technology, 9, 2832–2845.

    Article  Google Scholar 

  234. Selvi, A., Ananthaselvam, A., Narenkumar, J., Prakash, A. A., Madhavan, J., & Rajasekar, A. (2019). Effect of nano-zerovalent iron incorporated polyvinyl-alginate hybrid hydrogel matrix on inhibition of corrosive bacteria in a cooling tower water environment. SN Applied Sciences, 1, 1–9.

    Article  Google Scholar 

  235. Keshmiri, N., Najmi, P., Ramezanzadeh, B., Ramezanzadeh, M., & Bahlakeh, G. (2021). Nano-scale P, Zn-codoped reduced-graphene oxide incorporated epoxy composite; synthesis, electronic-level DFT-D modeling, and anti-corrosion properties. Progress in Organic Coatings, 159, 106416.

    Article  Google Scholar 

  236. Arasi, S. E., Ranjithkumar, R., Devendran, P., Krishnakumar, M., & Arivarasan, A. (2021). Investigation on electrochemical behaviour of manganese vanadate nanopebbles as potential electrode material for supercapacitors. Journal of Alloys and Compounds, 857, 157628.

    Article  Google Scholar 

  237. Jamaludin, A. A., Ilham, Z., Zulkifli, N. E. I., Wan, W. A. A. Q. I., Halim-Lim, S. A., Ohgaki, H., Ishihara, K., & Akitsu, Y. (2020). Understanding perception and interpretation of Malaysian university students on renewable energy. AIMS Energy, 8, 1029–1044.

    Article  Google Scholar 

  238. Zhang, J., Hu, W., Cao, S., & Piao, L. (2020). Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Research, 13, 2313–2322.

    Article  Google Scholar 

  239. Yu, Z., Liu, H., Zhu, M., Li, Y., & Li, W. (2021). Interfacial charge transport in 1D TiO2 based photoelectrodes for photoelectrochemical water splitting. Small, 17, 1903378.

    Article  Google Scholar 

  240. Thapa, R., Nainabasti, A., Lamsal, A., Malla, S., Thapa, B., Subedi, Y., & Ghimire, S. (2022). Pesticide persistence in agriculture and its hazardous effects on environmental components. International Journal of Applied Sciences and Biotechnology, 10, 75–83.

    Article  Google Scholar 

  241. Mishra, P., Tripathi, A., Dikshit, A., & Pandey, A. (2020). Natural bioactive products in sustainable agriculture (pp. 83–99). Springer.

    Book  Google Scholar 

  242. Hasanien, Y. A., Zaki, A. G., & Abdel-Razek, A. S. (2023). Employment of collective physical pretreatment and immobilization of Actinomucor biomass for prospective crystal violet remediation efficiency. Biomass Conversion and Biorefinery, 1–15, https://doi.org/10.1007/s13399-023-04991-3.

  243. Mallikarjunaswamy, C., Lakshmi Ranganatha, V., Ramu, R., & Nagaraju, G. (2020). Facile microwave-assisted green synthesis of ZnO nanoparticles: Application to photodegradation, antibacterial and antioxidant. Journal of Materials Science: Materials in Electronics, 31, 1004–1021.

    Google Scholar 

  244. Lakshmi Ranganatha, V., Pramila, S., Nagaraju, G., Surendra, B., & Mallikarjunaswamy, C. (2020). Cost-effective and green approach for the synthesis of zinc ferrite nanoparticles using Aegle Marmelos extract as a fuel: Catalytic, electrochemical, and microbial applications. Journal of Materials Science: Materials in Electronics, 31, 17386–17403.

    Google Scholar 

  245. Mallikarjunaswamy, C., Pramila, S., Nagaraju, G., Ramu, R., & Ranganatha, V. L. (2021). Green synthesis and evaluation of antiangiogenic, photocatalytic, and electrochemical activities of BiVO4 nanoparticles. Journal of Materials Science: Materials in Electronics, 32, 14028–14046.

    Google Scholar 

  246. Shaheen, T. I., Fouda, A., & Salem, S. S. (2021). Integration of cotton fabrics with biosynthesized CuO nanoparticles for bactericidal activity in the terms of their cytotoxicity assessment. Industrial & Engineering Chemistry Research, 60, 1553–1563.

    Article  Google Scholar 

  247. Wang, S., Xu, P., Tian, J., Liu, Z., & Feng, L. (2021). Phase structure tuning of graphene supported Ni-NiO nanoparticles for enhanced urea oxidation performance. Electrochimica Acta, 370, 137755.

    Article  Google Scholar 

  248. Murugadoss, G., Kumar, D. D., Kumar, M. R., Venkatesh, N., & Sakthivel, P. (2021). Silver decorated CeO2 nanoparticles for rapid photocatalytic degradation of textile rose bengal dye. Scientific Reports, 11, 1–13.

    Article  Google Scholar 

  249. Ahmed, M., Al-Zaqri, N., Alsalme, A., Glal, A., & Esa, M. (2020). Rapid photocatalytic degradation of RhB dye and photocatalytic hydrogen production on novel curcumin/SnO2 nanocomposites through direct Z-scheme mechanism. Journal of Materials Science: Materials in Electronics, 31, 19188–19203.

    Google Scholar 

  250. Taghizade Firozjaee, T., Mehrdadi, N., Baghdadi, M., & Nabi Bidhendi, G. (2018). Application of nanotechnology in pesticides removal from aqueous solutions-A review. International Journal of Nanoscience and Nanotechnology, 14, 43–56.

    Google Scholar 

  251. Khan, S. H., & Pathak, B. (2020). Zinc oxide based photocatalytic degradation of persistent pesticides: A comprehensive review. Environmental nanotechnology, monitoring & management, 13, 100290.‏

  252. Chen, S., Huang, D., Xu, P., Xue, W., Lei, L., Cheng, M., Wang, R., Liu, X., & Deng, R. (2020). Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: Will we stop with photocorrosion? Journal of Materials Chemistry A, 8, 2286–2322.

    Article  Google Scholar 

  253. Zada, A., Muhammad, P., Ahmad, W., Hussain, Z., Ali, S., Khan, M., Khan, Q., & Maqbool, M. (2020). Surface plasmonic-assisted photocatalysis and optoelectronic devices with noble metal nanocrystals: Design, synthesis, and applications. Advanced Functional Materials, 30, 1906744.

    Article  Google Scholar 

  254. Ge, R., Huo, J., Sun, M., Zhu, M., Li, Y., Chou, S., & Li, W. (2021). Surface and interface engineering: Molybdenum carbide–based nanomaterials for electrochemical energy conversion. Small, 17, 1903380.

    Article  Google Scholar 

  255. Vaquero Piñeiro, M. (2022). Changes in the livestock sector and animal nutrition: The Italian feed industry in the nineteenth and twentieth centuries. Historia agraria: Revista de agricultura e historia rural, 87, 129–160.‏

  256. Mostafalou, S., & Abdollahi, M. (2013). Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicology and Applied Pharmacology, 268, 157–177.

    Article  Google Scholar 

  257. Rajmohan, K., Chandrasekaran, R., & Varjani, S. (2020). A review on occurrence of pesticides in environment and current technologies for their remediation and management. Indian Journal of Microbiology, 60, 125–138.

    Article  Google Scholar 

  258. Aktar, W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2, 1–12.

    Article  Google Scholar 

  259. Maldani, M., Nassiri, L., & Ibijbijen, J. (2022). Microbial biotechnology for sustainable agriculture (Vol. 1, pp. 489–545). Springer.

    Book  Google Scholar 

  260. Rehman, A., Feng, J., Qunyi, T., Korma, S. A., Assadpour, E., Usman, M., Han, W., & Jafari, S. M. (2021). Pesticide-loaded colloidal nanodelivery systems; preparation, characterization, and applications. Advances in Colloid and Interface Science, 298, 102552.

    Article  Google Scholar 

  261. Sharma, A., Kumar, V., Bhardwaj, R., & Thukral, A. K. (2017). Seed pre-soaking with 24-epibrassinolide reduces the imidacloprid pesticide residues in green pods of Brassica juncea L. Toxicological & Environmental Chemistry, 99, 95–103.

    Article  Google Scholar 

  262. Abdollahdokht, D., Gao, Y., Faramarz, S., Poustforoosh, A., Abbasi, M., Asadikaram, G., & Nematollahi, M. H. (2022). Conventional agrochemicals towards nano-biopesticides: An overview on recent advances. Chemical and Biological Technologies in Agriculture, 9, 1–19.

    Article  Google Scholar 

  263. Mallikarjunaswamy, C., Pramila, S., Nagaraju, G., & Lakshmi Ranganatha, V. (2022). Enhanced photocatalytic, electrochemical and antimicrobial activities of α-Mn2V2O7 nanopebbles. Journal of Materials Science: Materials in Electronics, 33, 617–634.

    Google Scholar 

  264. Correa, M. G., Martínez, F. B., Vidal, C. P., Streitt, C., Escrig, J., & de Dicastillo, C. L. (2020). Antimicrobial metal-based nanoparticles: A review on their synthesis, types and antimicrobial action. Beilstein Journal of Nanotechnology, 11, 1450–1469.

    Article  Google Scholar 

  265. Ju, P., Hao, L., Zhang, Y., Sun, J., Dou, K., Lu, Z., Liao, D., Zhai, X., & Sun, C. (2022). Facile fabrication of a novel spindlelike MoS2/BiVO4 Z-scheme heterostructure with superior visible-light-driven photocatalytic disinfection performance. Separation and Purification Technology, 299, 121706.

    Article  Google Scholar 

  266. Wang, S., Cui, D., Hao, W., & Du, Y. (2022). Roles of cocatalysts on BiVO4 photoanodes for photoelectrochemical water oxidation: A minireview. Energy & Fuels, 36(19), 11394–11403.

  267. Bai, S., Li, Q., Han, N., Zhang, K., Tang, P., Feng, Y., Luo, R., Li, D., & Chen, A. (2020). Synthesis of novel BiVO4/Cu2O heterojunctions for improving BiVO4 towards NO2 sensing properties. Journal of Colloid and Interface Science, 567, 37–44.

    Article  Google Scholar 

  268. Ikram, M., Rashid, M., Haider, A., Naz, S., Haider, J., Raza, A., Ansar, M., Uddin, M. K., Ali, N. M., & Ahmed, S. S. (2021). A review of photocatalytic characterization, and environmental cleaning, of metal oxide nanostructured materials. Sustainable Materials and Technologies, 30, e00343.

    Article  Google Scholar 

  269. Chen, S., Huang, D., Xu, P., Gong, X., Xue, W., Lei, L., Deng, R., Li, J., & Li, Z. (2019). Facet-engineered surface and interface design of monoclinic scheelite bismuth vanadate for enhanced photocatalytic performance. ACS Catalysis, 10, 1024–1059.

    Article  Google Scholar 

  270. Chen, Z., Liu, Z., Zhan, J., She, Y., Zhang, P., Wei, W., Peng, C., Li, W., & Tang, J. (2021). Resolving the mechanism of oxygen vacancy mediated nonradiative charge recombination in monoclinic bismuth vanadate. Chemical Physics Letters, 766, 138342.

    Article  Google Scholar 

  271. Lotfi, S., Ouardi, M. E., Ahsaine, H. A., & Assani, A. (2022). Recent progress on the synthesis, morphology and photocatalytic dye degradation of BiVO4 photocatalysts: A review. Catalysis Reviews, 66(1), 214–258.

  272. Lai, C., Zhang, M., Li, B., Huang, D., Zeng, G., Qin, L., Liu, X., Yi, H., Cheng, M., & Li, L. (2019). Fabrication of CuS/BiVO4 (0 4 0) binary heterojunction photocatalysts with enhanced photocatalytic activity for Ciprofloxacin degradation and mechanism insight. Chemical Engineering Journal, 358, 891–902.

    Article  Google Scholar 

  273. Soltani, T., Tayyebi, A., & Lee, B.-K. (2020). BiFeO3/BiVO4 p− n heterojunction for efficient and stable photocatalytic and photoelectrochemical water splitting under visible-light irradiation. Catalysis Today, 340, 188–196.

    Article  Google Scholar 

  274. Dai, D., Liang, X., Zhang, B., Wang, Y., Wu, Q., Bao, X., Wang, Z., Zheng, Z., Cheng, H., & Dai, Y. (2022). Strain adjustment realizes the photocatalytic overall water splitting on tetragonal zircon BiVO4. Advanced Science, 9, 2105299.

    Article  Google Scholar 

  275. Salaeh, S., Perisic, D. J., Biosic, M., Kusic, H., Babic, S., Stangar, U. L., Dionysiou, D. D., & Bozic, A. L. (2016). Diclofenac removal by simulated solar assisted photocatalysis using TiO2-based zeolite catalyst; mechanisms, pathways and environmental aspects. Chemical Engineering Journal, 304, 289–302.

    Article  Google Scholar 

  276. Chan, Y. J., Chong, M. F., Law, C. L., & Hassell, D. (2009). A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal, 155, 1–18.

    Article  Google Scholar 

  277. Elessawy, N., Elkady, M., Elnouby, M., & Hamad, H. (2020). Microwave-assisted synthesis of new Cs doped ZrV2O7 nanorods with remarkably improved visible-light-driven photocatalytic performance. Materials Chemistry and Physics, 254, 123494.

    Article  Google Scholar 

  278. Wang, Q., Ji, S., Li, S., Zhou, X., Yin, J., Liu, P., Shi, W., Wu, M., & Shen, L. (2021). Electrospinning visible light response Bi2MoO6/Ag3PO4 composite photocatalytic nanofibers with enhanced photocatalytic and antibacterial activity. Applied Surface Science, 569, 150955.

    Article  Google Scholar 

  279. Elkady, M., Hamad, H., & El Essawy, N. (2019). Modification of optical and electrical properties of nanocrystalline VO2 0.5 H2O/ZrV2O7: Influence of Cs, Cr and Ga do**. Journal of Materials Research and Technology, 8, 1212–1223.

    Article  Google Scholar 

  280. Shreenivasa, L., Prashanth, S., Eranjaneya, H., Viswanatha, R., Yogesh, K., Nagaraju, G., & Ashoka, S. (2019). Engineering of highly conductive and mesoporous ZrV2O7: A cathode material for lithium secondary batteries. Journal of Solid State Electrochemistry, 23, 1201–1209.

    Article  Google Scholar 

  281. Yu, H., Huang, B., Wang, H., Yuan, X., Jiang, L., Wu, Z., Zhang, J., & Zeng, G. (2018). Facile construction of novel direct solid-state Z-scheme AgI/BiOBr photocatalysts for highly effective removal of ciprofloxacin under visible light exposure: Mineralization efficiency and mechanisms. Journal of Colloid and Interface Science, 522, 82–94.

    Article  Google Scholar 

  282. Loka, C., & Lee, K.-S. (2021). Preparation and photocatalytic performance of silver nanocrystals loaded Cu2O-WO3 composite thin films for visible light-active photocatalysis. Materials Research Bulletin, 137, 111192.

    Article  Google Scholar 

  283. Heng, Z. W., Chong, W. C., Pang, Y. L., & Koo, C. H. (2021). An overview of the recent advances of carbon quantum dots/metal oxides in the application of heterogeneous photocatalysis in photodegradation of pollutants towards visible-light and solar energy exploitation. Journal of Environmental Chemical Engineering, 9, 105199.

    Article  Google Scholar 

  284. Dong, H., Chen, G., Sun, J., Feng, Y., Li, C., & Lv, C. (2014). Stability, durability and regeneration ability of a novel Ag-based photocatalyst, Ag 2 Nb 4 O 11. Chemical Communications, 50, 6596–6599.

    Article  Google Scholar 

  285. Li, Z., Chen, X., Zhang, X., Wang, Y., Li, D., Gao, H., & Duan, X. (2021). Selective solid-phase extraction of four phenylarsonic compounds from feeds, edible chicken and pork with tailoring imprinted polymer. Food Chemistry, 347, 129054.

    Article  Google Scholar 

  286. Lin, X., Xu, D., Jiang, S., **e, F., Song, M., Zhai, H., Zhao, L., Che, G., & Chang, L. (2017). Graphitic carbon nitride nanocrystals decorated AgVO3 nanowires with enhanced visible-light photocatalytic activity. Catalysis Communications, 89, 96–99.

    Article  Google Scholar 

  287. Li, D.-N., He, Y.-M., Feng, J.-J., Zhang, Q.-L., Zhang, L., Wu, L., & Wang, A.-J. (2018). Facile synthesis of prickly platinum-palladium core-shell nanocrystals and their boosted electrocatalytic activity towards polyhydric alcohols oxidation and hydrogen evolution. Journal of Colloid and Interface Science, 516, 476–483.

    Article  Google Scholar 

  288. Ran, R., Meng, X., & Zhang, Z. (2016). Facile preparation of novel graphene oxide-modified Ag2O/Ag3VO4/AgVO3 composites with high photocatalytic activities under visible light irradiation. Applied Catalysis B: Environmental, 196, 1–15.

    Article  Google Scholar 

  289. Lv, X., Wang, J., Yan, Z., Jiang, D., & Liu, J. (2016). Design of 3D h-BN architecture as Ag3VO4 enhanced photocatalysis stabilizer and promoter. Journal of Molecular Catalysis A: Chemical, 418, 146–153.

    Article  Google Scholar 

  290. Sajid, M. M., Khan, S. B., Javed, Y., Amin, N., Shad, N. A., Zhang, Z., Yousaf, M. I., Sarwar, M., & Zhai, H. (2020). Synthesis of novel visible light assisted Pt doped zinc vanadate (Pt/Zn4V2O9) for enhanced photocatalytic properties. Chemical Physics, 539, 110980.

    Article  Google Scholar 

  291. Mishra, S., Priyadarshinee, M., Debnath, A., Muthe, K., Mallick, B., Das, N., & Parhi, P. (2020). Rapid microwave assisted hydrothermal synthesis cerium vanadate nanoparticle and its photocatalytic and antibacterial studies. Journal of Physics and Chemistry of Solids, 137, 109211.

    Article  Google Scholar 

  292. Sahoo, T., Anene, U. A., Nayak, S. K., & Alpay, S. P. (2020). Electronic and optical properties of zinc based hybrid organic-inorganic compounds. Materials Research Express, 7, 035701.

    Article  Google Scholar 

  293. Jiang, Y., Liu, P., Tian, S., Liu, Y., Peng, Z., Li, F., Ni, L., & Liu, Z. (2017). Sustainable visible-light-driven Z-scheme porous Zn3 (VO4) 2/g-C3N4 heterostructure toward highly photoredox pollutant and mechanism insight. Journal of the Taiwan Institute of Chemical Engineers, 78, 517–529.

    Article  Google Scholar 

  294. Liu, P., Yi, J., Bao, R., & Fang, D. (2019). A flower-like Zn 3 V 2 O 8/Ag composite with enhanced visible light driven photocatalytic activity: The triple-functional roles of Ag nanoparticles. New Journal of Chemistry, 43, 7482–7490.

    Article  Google Scholar 

  295. Mirsadeghi, S., Ghoreishian, S. M., Zandavar, H., Behjatmanesh-Ardakani, R., Naghian, E., Ghoreishian, M., ... & Pourmortazavi, S. M. (2023). In-depth insight into the photocatalytic and electrocatalytic mechanisms of Mg3V2O8@ Zn3V2O8@ ZnO ternary heterostructure toward linezolid: Experimental and DFT studies. Journal of Environmental Chemical Engineering, 11(1), 109106.‏

  296. Cheng, R., Cheng, C., Liu, G.-H., Zheng, X., Li, G., & Li, J. (2015). Removing pentachlorophenol from water using a nanoscale zero-valent iron/H2O2 system. Chemosphere, 141, 138–143.

    Article  Google Scholar 

  297. Shah, N. S., Khan, J. A., Sayed, M., Khan, Z. U. H., Iqbal, J., Imran, M., Murtaza, B., Zakir, A., & Polychronopoulou, K. (2020). Nano zerovalent zinc catalyzed peroxymonosulfate based advanced oxidation technologies for treatment of chlorpyrifos in aqueous solution: A semi-pilot scale study. Journal of Cleaner Production, 246, 119032.

    Article  Google Scholar 

  298. Chand, R., Ince, N. H., Gogate, P. R., & Bremner, D. H. (2009). Phenol degradation using 20, 300 and 520 kHz ultrasonic reactors with hydrogen peroxide, ozone and zero valent metals. Separation and Purification Technology, 67, 103–109.

    Article  Google Scholar 

  299. ElShafei, G., Yehia, F., Eshaq, G., & ElMetwally, A. (2017). Enhanced degradation of nonylphenol at neutral pH by ultrasonic assisted-heterogeneous Fenton using nano zero valent metals. Separation and Purification Technology, 178, 122–129.

    Article  Google Scholar 

  300. Raut, S. S., Kamble, S. P., & Kulkarni, P. S. (2016). Efficacy of zero-valent copper (Cu0) nanoparticles and reducing agents for dechlorination of mono chloroaromatics. Chemosphere, 159, 359–366.

    Article  Google Scholar 

  301. Tratnyek, P. G., Salter, A. J., Nurmi, J. T., & Sarathy, V. (2010). Nanoscale materials in chemistry: environmental applications (pp. 165–178). ACS Publications.

    Book  Google Scholar 

  302. Menon, S., Agarwal, H., & Shanmugam, V. K. (2021). Catalytical degradation of industrial dyes using biosynthesized selenium nanoparticles and evaluating its antimicrobial activities. Sustainable Environment Research, 31, 1–12.

    Article  Google Scholar 

  303. Fasanya, O. O., Al-Hajri, R., Ahmed, O. U., Myint, M. T., Atta, A. Y., Jibril, B. Y., & Dutta, J. (2019). Copper zinc oxide nanocatalysts grown on cordierite substrate for hydrogen production using methanol steam reforming. International Journal of Hydrogen Energy, 44, 22936–22946.

    Article  Google Scholar 

  304. Yin, Z., Hu, M., Liu, J., Fu, H., Wang, Z., & Tang, A. (2022). Tunable crystal structure of Cu–Zn–Sn–S nanocrystals for improving photocatalytic hydrogen evolution enabled by copper element regulation. Journal of Semiconductors, 43, 032701.

    Article  Google Scholar 

  305. Chen, B., Chen, S., Bandal, H. A., Appiah-Ntiamoah, R., Jadhav, A. R., & Kim, H. (2018). Cobalt nanoparticles supported on magnetic core-shell structured carbon as a highly efficient catalyst for hydrogen generation from NaBH4 hydrolysis. International Journal of Hydrogen Energy, 43, 9296–9306.

    Article  Google Scholar 

  306. Huff, C., Long, J. M., Aboulatta, A., Heyman, A., & Abdel-Fattah, T. M. (2017). Silver nanoparticle/multi-walled carbon nanotube composite as catalyst for hydrogen production. ECS Journal of Solid State Science and Technology, 6, M115.

    Article  Google Scholar 

  307. Zhao, L., Li, Q., Su, Y., Yue, Q., & Gao, B. (2017). A novel Enteromorpha based hydrogel for copper and nickel nanoparticle preparation and their use in hydrogen production as catalysts. International Journal of Hydrogen Energy, 42, 6746–6756.

    Article  Google Scholar 

  308. Al-Thabaiti, S. A., Khan, Z., & Malik, M. A. (2019). Bimetallic Ag-Ni nanoparticles as an effective catalyst for hydrogen generation from hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 44, 16452–16466.

    Article  Google Scholar 

  309. Li, Z., & Xu, Q. (2017). Metal-nanoparticle-catalyzed hydrogen generation from formic acid. Accounts of Chemical Research, 50, 1449–1458.

    Article  Google Scholar 

  310. Taherdanak, M., Zilouei, H., & Karimi, K. (2015). Investigating the effects of iron and nickel nanoparticles on dark hydrogen fermentation from starch using central composite design. International Journal of Hydrogen Energy, 40, 12956–12963.

    Article  Google Scholar 

  311. Cheng, L., Zhang, D., Liao, Y., Li, F., Zhang, H., & **ang, Q. (2019). Constructing functionalized plasmonic gold/titanium dioxide nanosheets with small gold nanoparticles for efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 555, 94–103.

    Article  Google Scholar 

  312. Yi, H., Zhang, X., Zheng, R., Song, S., An, Q., & Yang, H. (2021). Rich Se nanoparticles modified cobalt carbonate hydroxide as an efficient electrocatalyst for boosted hydrogen evolution in alkaline conditions. Applied Surface Science, 565, 150505.

    Article  Google Scholar 

  313. Peng, X., Hu, L., Wang, L., Zhang, X., Fu, J., Huo, K., Lee, L. Y. S., Wong, K.-Y., & Chu, P. K. (2016). Vanadium carbide nanoparticles encapsulated in graphitic carbon network nanosheets: A high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy, 26, 603–609.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Biosyn Company, Egypt, for the ongoing assistance during the collection of research topic of the present review article.

Author information

Authors and Affiliations

Authors

Contributions

GSE, DE, MAM, YAH, AM, RSA, NR, EME, GE, EAA, MNM, SHR, MG, HGN, AHH, MSA, AMN, MIAA, MMG, DEB, RM, WFE, and AIE suggested the research topic, investigated the article, planned the research methodology, wrote the original draft, and participated in data representation and article revising and editing.

Corresponding author

Correspondence to Gharieb S. El-Sayyad.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Research Involving Human Participation and/or Animals

Not applicable.

Informed Consent

Not applicable.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Eco-friendly strategies for NPs synthesis via biomass conversion.

• Utilizing biomass-based natural resources for the synthesis of biologically and renewably sourced NPs.

• Exploring the diverse applications of green NPs across multiple industries.

• Addressing safety considerations and ensuring regulatory compliance in green NPs production.

• Identifying upcoming trends and prospective innovations in sustainable NPs synthesis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sayyad, G.S., Elfadil, D., Mosleh, M.A. et al. Eco-friendly Strategies for Biological Synthesis of Green Nanoparticles with Promising Applications. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01494-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01494-x

Keywords

Navigation