Log in

Comparative Analysis and Applications of Green Synthesized Cobalt Oxide (Co3O4) Nanoparticles: A Systematic Review

  • Review
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The green synthesis method is an eco-friendly and sustainable approach to producing nanoparticles, contributing to lowering environmental impact and enhancing their compatibility for biological applications. Cobalt oxide (Co3O4) nanoparticles have recently gained significant attention due to their unique properties and diverse applications in various fields. This review presents a comprehensive comparative analysis of different green synthesis routes for Co3O4 nanoparticles, including plant extracts, microorganisms, and other natural sources. Various physicochemical characterization methods like X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, and UV–vis spectroscopy are employed to evaluate the synthesized nanoparticles’ structural, morphological, and optical properties. Also, this review examines the applications of green-manufactured Co3O4 nanoparticles in catalysis, sensors, energy storage devices, eco-friendly remediation, and biomedical fields. The comparative analysis highlights the advantages and limitations of different green synthesis methods regarding nanoparticle size, morphology, stability, and functional properties. Insights from this comparative analysis provide valuable guidance for optimizing green synthesis approaches and expanding the applications of Co3O4 nanoparticles in various domains, paving the way for sustainable and eco-friendly nanomaterial synthesis and utilization.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Heera, P., & Shanmugam, S. (2015). Nanoparticle characterization and applications: An overview. Int J Curr Microbiol App Sci, 4(8), 379–386.

    Google Scholar 

  2. Ahmed, K., Tariq, I., & Mudassir, S. U. S. M. (2021). Green synthesis of cobalt nanoparticles by using methanol extract of plant leaf as reducing agent. Pure and Applied Biology PAB., 5(3), 453–457. https://doi.org/10.19045/bspab.2016.50058

    Article  Google Scholar 

  3. Esa, Y. A. M., & Sapawe, N. (2020). A short review of the biosynthesis of cobalt metal nanoparticles. Materials Today: Proceedings., 2020(31), 378–385. https://doi.org/10.1016/j.matpr.2020.07.183

    Article  Google Scholar 

  4. Waris, A., Din, M., Ali, A., Afridi, S., Baset, A., Khan, A. U., & Ali, M. (2021). Green fabrication of Co and Co3O4 nanoparticles and their biomedical applications: A review. Open life sciences., 16(1), 14–30. https://doi.org/10.1515/biol-2021-0003

    Article  Google Scholar 

  5. Khadhim, A. I., & Kadhim, R. E. (2021). Synthesis of cobalt nanoparticles biologically by Conocarpus erectus L. aqueous leaves extract. Annals of the Romanian Society for Cell Biology., 2021, 5361–5372. https://doi.org/10.1016/j.envman.2019.04.059

    Article  Google Scholar 

  6. Mindru, I., Gingasu, D., Patron, L., Ianculescu, A., Surdu, V. A., Culita, D. C., & Oprea, O. (2019). A new approach: Synthesis of cobalt aluminate nanoparticles using tamarind fruit extract. Materials Science and Engineering B., 246, 42–48. https://doi.org/10.1016/J.MSEB.2019.05.031

    Article  Google Scholar 

  7. Zola, A. S., Ribeiro, R. U., Bueno, J. M. C., Zanchet, D., & Arroyo, P. A. (2014). 2014 Cobalt nanoparticles prepared by three different methods. Journal of Experimental Nanoscience., 9(4), 398–405. https://doi.org/10.1080/17458080.2012.662723

    Article  Google Scholar 

  8. Iravani, S., & Varma, R. S. (2021). Sustainable synthesis of cobalt and cobalt oxide nanoparticles and their catalytic and biomedical applications. Green Chemistry., 22(9), 2643–2661. https://doi.org/10.1039/D0GC00885K

    Article  Google Scholar 

  9. Zapf, R., Thiele, R., Wichert, M., O’Connell, M., Ziogas, A., & Kolb, G. (2013). Application of rhodium nanoparticles for steam reforming of propane in microchannels. Catalysis Communications., 41, 140–145. https://doi.org/10.1016/j.catcom.2013.07.018

    Article  Google Scholar 

  10. Lee, Y., Jang, S., Cho, C. W., Bae, J. S., Park, S., & Park, K. H. (2013). Recyclable rhodium nanoparticles: Green hydrothermal synthesis, characterization, and highly catalytic performance in reduction of nitroarenes. J Nanosci Nanotechnol., 13(11), 7477–81. https://doi.org/10.1166/jnn.2013.7903

    Article  Google Scholar 

  11. Imtiyaz, A., & Singh, A. (2023). Applications of nanotechnology in agriculture and food science A review. Asian Journal of Chemistry., 35(5), 1049–1062. https://doi.org/10.14233/ajchem.2023.27735

    Article  Google Scholar 

  12. Imtiyaz, A., Singh, A. 2024. Green synthesized ruthenium oxide nanoparticles mediated through Iris Kashmiriana (Mazar-Graveyard) plant extract and antimicrobial activity. Journal of Inorganic and Organometallic Polymers and Materials. 2024. https://doi.org/10.1007/s10904-023-02968-3

  13. Xu, L., Liu, D., Chen, D., Liu, H., & Yang, J. (2019). Size and shape-controlled synthesis of rhodium nanoparticles. heliyon., 5(1), 01165. https://doi.org/10.1016/j.heliyon.2019.e01165

    Article  Google Scholar 

  14. Nadeem, M., Khan, R., Afridi, K., Nadhman, A., Ullah, S., & Faisal, S. (2020). Green synthesis of cerium oxide nanoparticles (CeO2 NPS) and their antimicrobial applications: A review. International Journal of Nanomedicine., 15, 5951. https://doi.org/10.2147/IJN.S255784

    Article  Google Scholar 

  15. Kubik, T., Bogunia-Kubik, K., & Sugisaka, M. (2005). Nanotechnology on duty in medical applications. Curr Pharm Biotechnol., 6(1), 17–33. https://doi.org/10.2174/1389201053167248

    Article  Google Scholar 

  16. Smith, D. M., Simon, J. K., & Baker, J. R. (2013). Applications of nanotechnology for immunology. Nat Rev Immunol., 13(8), 592–605. https://doi.org/10.1038/nri3488

    Article  Google Scholar 

  17. Faucon, M P., Pourret, O., Lange, B. (2018) Element case studies: Cobalt and copper. In: Agromining: farming for metals. Cham: Springer 2018. p. 233–9 https://doi.org/10.1007/978-3-030-58904-2-18

  18. Iravani, S., & Varma, R. S. (2020). Sustainable synthesis of cobalt and cobalt oxide nanoparticles and their catalytic and biomedical applications. Green Chem., 22(9), 2643–61. https://doi.org/10.1039/D0GC00885K

    Article  Google Scholar 

  19. Egorova, K. S., & Ananikov, V. P. (2017). Toxicity of metal compounds: Knowledge and myths. Organometallics., 36(21), 4071–90. https://doi.org/10.1021/acs.organomet.7b00605

    Article  Google Scholar 

  20. Xu, Q., Li, W., Ding, L., Yang, W., **ao, H., & Ong, W. J. (2019). Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: Mechanism, properties, and applications. Nanoscale., 11(4), 1475–504. https://doi.org/10.1039/C8NR08738E

    Article  Google Scholar 

  21. Ansari, S. M., Bhor, R. D., Pai, K. R., Sen, D., Mazumder, S., & Ghosh, K. (2017). Cobalt nanoparticles for biomedical applications: Facile synthesis, physicochemical characterization, cytotoxicity behavior, and biocompatibility. Appl Surf Sci., 414, 171–87. https://doi.org/10.1016/j.apsusc.2017.03.002

    Article  Google Scholar 

  22. Raveau, B., & Seikh, M. M. (2015). Charge ordering in cobalt oxides: Impact on the structure magnetic and transport properties. Z Anorg Allg Chem., 641(8–9), 1385–94. https://doi.org/10.1002/zaac.201500085

    Article  Google Scholar 

  23. Pagar, T., Ghotekar, S., Pagar, K., Pansambal, S., Oza, R. (2019) J Chem Rev. 2019; 1(4):260–270. https://doi.org/10.22034/AJCB.2020.109501

  24. Sapawe, N., Rustam, M. A., Mahadzir, M. H. H., Lan, M. K. E. M., Raidan, A., & Hanafi, M. F. (2020). A review on the current techniques and technologies of organic pollutants removal from water/wastewater. Today: Proceedings, 19, A158–A165. https://doi.org/10.1016/j.matpr.2021.01.265

    Article  Google Scholar 

  25. Khairoi, N. F., Sapawe, N., & Danish, M. (2019). Effective Photocatalytic Removal of Different Dye Stuffs Using ZnO/CuO-Incorporated onto Eggshell Templating. Materials Today: Proceedings, 19, 1255–1260. https://doi.org/10.1016/j.matpr.2019.11.130

    Article  Google Scholar 

  26. Esa, M. A. Y., & Sapawe, N. (2020). A short review on biosynthesis of cobalt metal nanoparticles. Materials Today: Proceedings, 19, 1333–1339. https://doi.org/10.1016/j.matpr.2020.07.183

    Article  Google Scholar 

  27. Ruangtong, J., T-Thienprasert, J., & T-Thienprasert, N. P. (2020). Green synthesized ZnO nanosheets from banana peel extract possess anti-bacterial activity and anti-cancer activity. Materials Today Communications, 24, 101224. https://doi.org/10.1016/J.MTCOMM.2020.101224

    Article  Google Scholar 

  28. Ramesh, P., Saravanan, K., Manogar, P., Johnson, J., Vinoth, E., & Mayakannan, M. (2021). Green synthesis and characterization of biocompatible zinc oxide nanoparticles and evaluation of its antibacterial potential. Sensing and Bio-Sensing Research., 31, 100399. https://doi.org/10.1016/J.SBSR.2021.100399

    Article  Google Scholar 

  29. PuthukkaraPJoseTlalS, A. R. S. D. (2021). Plant mediated synthesis of zero valent iron nanoparticles and its application in water treatment. Journal of Environmental Chemical Engineering., 9(1), 104569. https://doi.org/10.1016/J.JECE.2020.104569

    Article  Google Scholar 

  30. Saravanan, P., SenthilKannan, K., Vimalan, M., Tamilselvan, S., & Sankar, D. (2020). Biofriendly and competent domestic microwave-assisted method for the synthesis of ZnO nanoparticles from the extract of Azadirachta indica leaves. Materials Today: Proceedings, 33, 3160–3163. https://doi.org/10.1016/J.MATPR.2020.03.799

    Article  Google Scholar 

  31. Akhlaghi, Najafpour-Darzi, G., & Younesi, H. (2020). Facile and green synthesis of cobalt oxide nanoparticles using ethanolic extract of Trigonella foenumgraceum (Fenugreek) leaves. Advanced Powder Technology, 31(8), 3562–3569. https://doi.org/10.1016/J.APT.2020.07.004

    Article  Google Scholar 

  32. Asha, G., Rajeshwari, V., Stephen, G., Gurusamy, S., & Rachel, C. J. (2020). Eco-friendly synthesis and characterization of cobalt oxide nanoparticles by sativum species and its photocatalytic activity. Materials Today Proceedings., 338, 2214–7853. https://doi.org/10.3390/molecules27175646

    Article  Google Scholar 

  33. Mohammad, S. Z., Lashkari, B., & Khosravan, A. (2021). Green synthesis of Co3O4 nanoparticles by using walnut green skin extract as a reducing agent by using response surface methodology. Surface and Interfaces., 2021, 23. https://doi.org/10.1016/J.SURFIN.2021.100970

    Article  Google Scholar 

  34. Rasheed, T., Nabeel, F., Bilal, M., & Iqbal, H. M. N. (2019). Biogenic synthesis and characterization of cobalt oxide nanoparticles for catalytic reduction of direct yellow-142 and methyl orange dyes. Biocatalysis and Agricultural Biotechnology, 101154. https://doi.org/10.1016/J.BCAB.2019.101154

  35. Siddique, M., Khan, N. M., Saeed, M., Ali, S., & Shah, Z. (2021). Green synthesis of cobalt oxide nanoparticles using Citrus media leaves extract: characterization and photocatalytic activity. Zeitschrift Für Physikalische Chemie, 235(6), 663–681. https://doi.org/10.1002/jemt.23756

    Article  Google Scholar 

  36. Jahani, M., Khavari-Nejad, R. A., Mahmoodzadeh, H., & Saadatmand, S. (2020). Effects of cobalt oxide nanoparticles (Co3O4 NPs) on ion leakage, total phenol, antioxidant enzymes activities and cobalt accumulation in Brassica napus L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48, 1260–1275. https://doi.org/10.15835/nbha48311766

    Article  Google Scholar 

  37. Velgosová, O., Mrazikova, A., & Marcincˇáková, R. (2016). Influence of pH on green synthesis of Ag nanoparticles. Mater Lett., 180, 336–339. https://doi.org/10.1016/j.matlet.2016.04.045

    Article  Google Scholar 

  38. Chithra, M. J., Sathya, M., & Pushpanathan, K. (2015). Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method. Acta Metallurgica Sinica, 28, 394–404. https://doi.org/10.1007/s40195-015-0218-8

    Article  Google Scholar 

  39. Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. (2018). Nanobiotechnol., 16(84), 1–24. https://doi.org/10.1186/s12951-018-0408-4

    Article  Google Scholar 

  40. Zamri, M. S. F. A., & Sapawe, N. (2019). Electrosynthesis of ZnO nanoparticles deposited onto eggshell for degradation of Cong red. Mater Today Proc., 19, 1261–1266.

    Article  Google Scholar 

  41. Khairol, N. F., Sapawe, N., & Danish, M. (2019). Photocatalytic study of ZnO-CuO/ES Degradation of Congo Red. Mater Today Proc., 19(2019), 1333–1339. https://doi.org/10.1016/j.matpr.2019.11.146

    Article  Google Scholar 

  42. Zamri, M. S. F. A., & Sapawe, N. (2018). Performance studies of electrosynthesis of titanium dioxide nanoparticles for phenol degradation. Mater Today Proc., 5(10), 21797–21801. https://doi.org/10.1016/j.matpr.2018.07.034

    Article  Google Scholar 

  43. Hanafi, M. F., Sapawe, N., Rahim, M. Z. A., Rahman, N. N., Rahman, A. H. A., & Ahmad, A. A. (2016). Performance of egzro2-egfe2o3/hy as photocatalyst and its efficacy in decolorization of dye-contaminants. Malaysian Journal of Analytical Science, 2(5), 1052–1058.

    Google Scholar 

  44. Sapawe, N., & Hanafi, M. F. (2015). Facile one-pot electrosynthesis of high photoreactive hexacoordinated Si with Zr and Zn Catalyst. RSC advances., 5(92), 75141–75144. https://doi.org/10.1039/C5RA13471D

    Article  Google Scholar 

  45. Sapawe, N. (2015). Effective solar-based iron oxide supported HY zeolite catalyst for the decolorization of organic and simulated dyes. New J Chem., 39(8), 6377–6387. https://doi.org/10.1039/C5NJ00890E

    Article  Google Scholar 

  46. Sapawe, N. (2015). Hybridization of zirconia, zinc, and iron supported on HY zeolite as a solar-based catalyst for the rapid decolorization of various dyes. New J Chem., 39(6), 4526–4533. https://doi.org/10.1039/C4NJ02424A

    Article  Google Scholar 

  47. Hanafi, M. F., & Sapawe, N. (2020). Test Eng. Manage. 2020;83: 13610–13615.

  48. Hanafi, M. F., & Sapawe, N. (2020).Test Eng. Manage. 2020;83: 13667–13672.

  49. Hanafi, M. F., & Mustafa, A N., Sapawe, N. (2020). Malaysian J. Anal. Sci. 2020; 24 (2):266– 275.

  50. Enas, I., Kenfouch, M., Dhlamini, M S., Simiso, D. Green biosynthesis of rhodium nanoparticles via Aspalathus linearis natural extract. J of Nanomaterials & Molecular Nanotechnology; 06(2):2324-8777. 10.4172.2324-8777.1000212

  51. Vijayanandan, A. S., & Balakrishnan, R. M. (2018). Biosynthesis of cobalt oxide nanoparticles using endophytic fungus Aspergillus nidulans. Journal of Environmental Management, 15(218), 442–50. https://doi.org/10.1016/j.jenvman.2018.04.032

    Article  Google Scholar 

  52. Baker, S., & Satish, S. (2012). Endophytes: Toward a vision in the synthesis of nanoparticles for future therapeutic agents. Int J Bio-Inorg Hybd Nanomater., 1(2), 67–77. https://doi.org/10.1002/9781118369920.ch1

    Article  Google Scholar 

  53. Hsu, C. M., Huang, Y. H., Chen, H. J., Lee, W. C., Chiu, H. W., & Maity, J. P. (2018). Green synthesis of nano-Co3O4 by microbial induced precipitation (MIP) process using Bacillus pasteurii and its application as a supercapacitor. Mater Today Commun., 1(14), 302–11. https://doi.org/10.1016/j.mtcomm.02.005

    Article  Google Scholar 

  54. Shim, H. W., **, Y. H., Seo, S. D., Lee, S. H., & Kim, D. W. (2011). Highly reversible lithium storage in Bacillus subtilis-directed porous Co3O4 nanostructures. ACS Nano, 5(1), 443–449. https://doi.org/10.1021/nn1021605

  55. Kumar, U., Shete, A., Harle, A. S., Kasyutich, O., Schwarzacher, W., & Pundle, A. (2008). Extracellular bacterial synthesis of protein functionalized ferromagnetic Co3O4 nanocrystals and imaging of self-organization of bacterial cells under stress after exposure to metal ions. Chem Mater., 20(4), 1484–91. https://doi.org/10.1021/cm702727x

    Article  Google Scholar 

  56. Jang, E., Shim, H. W., Ryu, B. H., An, D. R., Yoo, W. K., & Kim, K. K. (2015). Preparation of cobalt nanoparticles from polymorphic bacterial templates: A novel platform for biocatalysis. International Journal of Biological Macromolecules., 81, 747–753. https://doi.org/10.1016/j.ijbiomac.2015.09.009

    Article  Google Scholar 

  57. Sharma, S., Patil, B., Pathak, A., Ghosalkar, S., Mohanta, H. K., & Roy, B. (2018).Clean Technol Environ Policy. 20:695-701. https://doi.org/10.1007/s10098-017-1394-1

  58. Sonkusare, V. N., Chaudhary, R. G., Bhusari, G. S., Mondal, A., Potbhare, A. K., Mishra, R. K., Juneja, H. D., & Abdala, A. A. (2020). Mesoporous octahedron-shaped tricobalt tetroxide nanoparticles for photocatalytic degradation of toxic dyes. ACS Omega., 5(14), 7823–7835. https://doi.org/10.1021/acsomega.9b03998

    Article  Google Scholar 

  59. Kapil, A. (2005). The challenge of antibiotic resistance: Need to contemplate. Indian Journal of Medical Research, 121(2), 83–91.

    Google Scholar 

  60. PatilShriniwas, P. (2017). Antioxidant, the antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L leaves. Biochemistry and Biophysics Reports, 10, 76. https://doi.org/10.1016/j.bbrep.2017.03.002

    Article  Google Scholar 

  61. Eltarahony, M., Zaki, S., ElKady, M., & Abd-El-Haleem, D. (2018). Biosynthesis, characterization of some combined nanoparticles and its biocide potency against a broad spectrum of pathogens. Journal of Nanomaterials, 1, 71. https://doi.org/10.1155/2018/5263814

    Article  Google Scholar 

  62. Heinemann M. G. & Dias, D. (2021). “Biogenic synthesis of metallic nanoparticles from algae,” in Bioprospecting Algae for Nanosized Materials, pp. 71–91, Springer, Berlin, Germany.

  63. Jeevanandam, J., Kiew, S. F., Boakye-Ansah, S., et al. (2022). Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale., 14(7), 2534–2571.

    Article  Google Scholar 

  64. Sudhakar, M., Kumar, B. R., Mathimani, T., & Arunkumar, K. (2019). A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. Journal of Cleaner Production., 228, 1320–1333.

    Article  Google Scholar 

  65. AlNadhari, S., Al-Enazi, N. M., Alshehrei, F., & Ameen, F. (2021). A review on biogenic synthesis of metal nanoparticles using marine algae and its applications. Environmental Research, 194. https://doi.org/10.1016/j.envres.2020.110672

  66. D’Archino, R., & Zuccarello, G. C. (2021). Two red macroalgae newly introduced into New Zealand: Pachymeniopsis lanceolata (K. Okamura) Y. Yamada ex S. Kawabata and Fushitsunagia catenata Filloramo et G. W. Saunders. Botanica Marina, 64(2), 129–138. https://doi.org/10.1515/bot-2021-0013

  67. Sidorwicz, A., Yigit, N., Wicht, T., StogerPollach, M., Concas, A., Orru, R., Cao, G., & Rupprechter, G. (2024). Microalgae-derived CO3O4 nanomaterials for catalytic CO oxidation. RSC Advances, 14(7), 4575–4586. https://doi.org/10.1039/D4RA00343H

  68. Sidorowicz, A., Yigit, N., Wicht, T., Stöger-Pollach, M., Concas, A., Orrù, R., Cao, G., & Rupprechter, G. (2024). Microalgae-derived Co 3 O 4 nanomaterials for catalytic CO oxidation. RSC Advance., 14, 4575–4586. https://doi.org/10.1039/D4RA00343H

    Article  Google Scholar 

  69. AliJahdaly, BAl., Abu-Rayyan, A., Taher, M. M., & Shoueir, K. (2022). Photosynthesis of Co3O4 nanoparticles as the high energy storage material of an activated carbon/Co3O4 symmetric supercapacitor device with excellent cyclic stability based on a Na2SO4 aqueous electrolyte. ACS Omega., 7, 23673–23684. https://doi.org/10.1021/acsomega.2c02305

    Article  Google Scholar 

  70. A. K. Hajri, M. A. Albalawi, I. Alsharif, B. Jamoussi. 2022. Marine algae extract () for the green synthesis of (Co3O4) NPs: Antioxidant, antibacterial, anticancer, and homolytic activities. Bioinorganic Chemistry and Applications., 2022, 1565-3633.https://doi.org/10.1155/2022/3977935

  71. Ajarem, J. S., Maodaa, S. N., Allam, A. A., Taher, M. M., & Khalaf, M. (2021). Benign synthesis of cobalt oxide nanoparticles containing red algae extract: Antioxidant, antimicrobial, anticancer, and anticoagulant activity. Journal of Cluster Science. https://doi.org/10.1007/s10876-021-02004-9

  72. C. Minelli, talk on ‘Measuring nanoparticle properties: Are we high and dry or all at sea?’ at ‘Nanoparticle Characterisation – Challenges for the Community’ event – IOP (Institute of Physics), book of abstracts, July 2016, London.

  73. P Dobson, talk on ‘NPs: What do we need to know and can we measure everything we need to?’ at ‘Nanoparticle Characterisation – Challenges for the Community’ event – IOP (Institute of Physics), book of abstracts, July 2016, London.

  74. Kahle, M., Kleber, M., & Jahn, R. (2002). Review of XRD-based quantitative analyses of clay minerals in soils: The suitability of mineral intensity factors. Geoderma, 109, 191–205.

    Article  Google Scholar 

  75. Titus, D., Samuel, E. J. J., & Roopan, S. M. (2019). Nanoparticle characterization techniques. In A. Shukla & S. Iravani (Eds.), Green Synthesis, Characterization and Applications of Nanoparticles (pp. 303–319). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-08-102579-6.00012-5

    Chapter  Google Scholar 

  76. Delvallée, A., Feltin, N., Ducourtieux, S., Trabelsi, M., & Hochepied, J. (2015). Direct comparison of AFM and SEM measurements on the same set of nanoparticles. Measurement Science and Technology, 26, 085601.

    Article  Google Scholar 

  77. Kohl, H., & Reimer, L. (2008). Transmission Electron Microscopy (p. 36). Springer Series in Optical Sciences.

    Google Scholar 

  78. Patil, M. P., & Kim, G.-D. (2018). Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Colloids and Surfaces B: Biointerfaces, 172, 487–495.

    Article  Google Scholar 

  79. Lewczuk, B., & Szyrynska, N. (2021). Field-emission scanning electron microscope as a tool for large-area and large-volume ultrastructural studies. Animals, 11, 3390. https://doi.org/10.3390/ani11123390

    Article  Google Scholar 

  80. Newbury, D. E., & Ritchie, N. W. (2013). Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative. Scanning, 35, 141–168. https://doi.org/10.1002/sca.21041

    Article  Google Scholar 

  81. Dubey, S., Kumar, J., Kumar, A., & Sharma, Y. C. (2018). Facile and green synthesis of highly dispersed cobalt oxide (Co3O4) nano powder: Characterization and screening of its eco-toxicity. Advanced Powder Technology, 29(11), 2583–2590. https://doi.org/10.1016/J.APT.2018.03.009

    Article  Google Scholar 

  82. Samuel, M. S., et al. (2020). green synthesis of cobalt-oxide nanoparticle using jumbo Muscadine (Vitis rotundifolia): Characterization and photocatalytic activity of acid Blue-74. Journal of Photochemistry and Photobiology B: Biology, 211, 112011. https://doi.org/10.1016/J.JPHOTOBIOL.2020.112011

    Article  Google Scholar 

  83. Singh, A. K., Mishra, S., & Singh J. K. (2019) Underwater superoleophobic biomaterial based on waste potato peels for simultaneous separation of oil/water mixtures and dye adsorption. Cellulose. https://doi.org/10.1007/s10570-019-02458-1

  84. Bilal, M., Mehmood, S., Rasheed, T., & Iqbal, H. M. N. (2019). Bio-catalysis and biomedical perspectives of magnetic nanoparticles as versatile carriers. Magnetochemistry., 4, 45. https://doi.org/10.3390/magnetochemistry5030042

    Article  Google Scholar 

  85. Ajarem, J S., Maodaa, S N., Allam, A A., Taher, M M., Khalaf, M. 2021. Benign synthesis of cobalt oxide nanoparticles containing red algae extract: Antioxidant, antimicrobial, anticancer, and anticoagulant activity. Journal of Cluster Science 2021:1-12 https://doi.org/10.1007/s10876-021-02004-9

  86. Hamidian, K., Najafidoust, A., Miri, A., & Sarani, M. (2021). Photocatalytic performance on degradation of acid orange 7 dye using biosynthesized un-doped and Co doped CeO2 nanoparticles. Materials Research Bulletin, 138, 111206. https://doi.org/10.1016/J.MATERRESBULL.2021.111206

  87. Shahanavaj, K., Anees, A. A., Abdul, A. K., Rehan, A., & Omar, A.-O.W.A. (2015). In-vitro evaluation of anticancer and antibacterial activities of cobalt oxide nanoparticles. JBIC Journal of Biological Inorganic Chemistry, 20(8), 1319–1326. https://doi.org/10.1007/s00775-015-1310-2

    Article  Google Scholar 

  88. K. Singh, A. Mishra, D. Sharma, K. Singh, (2019) Antiviral and antimicrobial potentiality of nano drugs. Appl. Target. Nano Drugs Deliv. Syst. 343–356. https://doi.org/10.1016/B978-0-12-814029-1.00013-2

  89. Santhosh, A. S., Sandeep, S., Manukumar, H. M., Mahesh, B., & Kumara Swamy, N. (2021). Green synthesis of silver nanoparticles using cow urine: Antimicrobial and blood biocompatibility studies. JCIS Open 3. 100023. https://doi.org/10.1016/J.JCISO.2021.100023

  90. Shahzadi, T., Zaib, M., Shehzadi, S., Abbasi, M. A., & Shahid, M. (2019). Synthesis of eco-friendly cobalt nanoparticles using Celosia argentea plant extract and their efficacy studies as antioxidant, antibacterial hemolytic and catalytical agent. Arabian Journal for Science and Engineering., 2019(44), 6435–6444.

    Article  Google Scholar 

  91. Ghadi, F.E., Ghara, A.R., & Naeimi, A. (2018). Phytochemical fabrication, characterization and antioxidant application of copper and cobalt oxides nanoparticles using Sesbania sesban Plant. Chemical Papers. https://doi.org/10.1007/s11696-018-0506-7

  92. Khalil, A. T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z. K., & Maaza, M. (2020). Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck). Arab. J. Chem., 13(1), 606–619. https://doi.org/10.1016/J.ARABJC.2017.07.004

    Article  Google Scholar 

  93. Rajeswari, D. V., Khalifa, A. S., Elfasakhany, A., Badruddin, I. A., Kamangar, S. & Brindhadevi, K. (2021). Green and eco-friendly synthesis of cobalt oxide nanoparticles using Phoenix dactylifera L: antimicrobial and photocatalytic activity. Applied Nanoscience. https://doi.org/10.1007/s13204-021-02038-5

  94. Alireza, H. (2016). Quantitative Structure-Activity Relationship (QSAR) Approximation for cadmium oxide (CdO) and rhodium (III) oxide (Rh2O3) nanoparticles as anti-cancer drugs for the catalytic. Annals of Clinical and Laboratory Research., 4(1), 1–1. https://doi.org/10.21767/2386-5180.100076

    Article  Google Scholar 

  95. Anuradha, C. T., & Raji, P. (2020). Facile synthesis and characterization of Co3O4 nanoparticles for high-performance supercapacitors using Camellia sinensis. Applied Physics A., 126(3), 164. https://doi.org/10.1007/s00339-020-3352-8

    Article  Google Scholar 

  96. Rajasree, S., Selvam, S., Quynh, H. L., Mysoon, M. A., Latifah, A. H., Jhanani, G. K., **tae, L., & Selvaraj, B. (2023). Green synthesized cobalt oxide nanoparticles using Curcuma longa for anti-oxidant, antimicrobial, dye degradation and anti-cancer property. Environmental Research., 236, 116747. https://doi.org/10.1016/j.envres.2023.116747

    Article  Google Scholar 

  97. Pranjali, B. C., & Manjunath, B. T. (2024). Green synthesis of cobalt oxide nanoparticles with in-vitro cytotoxicity assessment using pomegranate (Punica granatum L.) seed oil: A promising approach for antimicrobial and anticancer applications. Plant Science Today, 11(2), 221–232. https://doi.org/10.14719/pst.3014

  98. Sharma, N., Reddy, A. S., & Yun, K. (2021). Electrochemical detection of hydrocortisone using green-synthesized cobalt oxide nanoparticles with nafion-modified glassy carbon electrode. Chemosphere, 282, 131029. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131029

  99. AgnihotriA, A. S., & Varghese, N. M. (2021). Transition metal oxides in electrochemical and biosensing: A state-of-art review. Applied Surface Science Advances, 4, 100072. https://doi.org/10.1016/J.APSADV.2021.100072

  100. Kumar, M., Tomar, M., Amarowicz, R., Saurabh, V., Nair, M. S., Maheshwari, C., Sasi, M., Prajapati, U., Hasan, M., Singh, S., et al. (2021). Guava (Psidium guajava L) Leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities. Foods., 10, 752.

    Article  Google Scholar 

  101. Baumann, J., Wurn, G., & Bruchlausen, F. V. (1979). Prostaglandin synthetase inhibiting O2 radical scavenging properties of some flavonoids and related phenolic compounds. Deutsche Pharmakologische Gesellschaft abstracts of the 20th spring meeting. Arc. Pharmacol., 307, R1–R77.

    Google Scholar 

  102. Rajakumar, G., Vaishnavi, R., Sonalika, S., Mydhili, G., Sulthana, S., Kaliaperumal, R., Devi Ri, V., et al. (2022). Green synthesis and characterization of cobalt oxide nanoparticles using Psidium guajava leaves extracts and their photocatalytic and biological activities. Molecules., 27, 5646. https://doi.org/10.3390/molecules27175646

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

"Asima imtiyaz wrote the main manuscript text, Rahul Gaur prepared the figures, and Dr Ajay Singh supervised the manuscript. All authors reviewed the manuscript."

Corresponding author

Correspondence to Asima Imtiyaz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Informed Consent

None.

Research Involving Humans and Animals Statement

None.

Conflict of Interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imtiyaz, A., Singh, A. & Gaur, R. Comparative Analysis and Applications of Green Synthesized Cobalt Oxide (Co3O4) Nanoparticles: A Systematic Review. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01452-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01452-7

Keywords

Navigation