Log in

Eco-friendly Synthesis of Selenium Nanoparticles Using Orthosiphon stamineus Leaf Extract and Its Biocompatibility Studies

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Green synthesized nanoparticles possess potential bioactivity with low toxicity and enhanced bioavailability and could be used for various biomedical applications. Orthosiphon stamineus is a medicinal plant with a rich bioactive compound that could be used for nanoparticle synthesis. In the current study, we synthesized selenium nanoparticles (SeNPs) using an aqueous extract of Orthosiphon stamineus (OS) leaves and evaluated their biocompatibility. The prepared SeNPs were characterized using a UV–visible spectrophotometer, Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDAX). The biocompatibility of the SeNPs was investigated using hemocompatibility and apoptosis assay. Our findings displayed a colour change from dark green to ruby red, which in turn confirmed the formation of SeNPs. The UV–visible spectrum further confirmed this, showing maximum absorbance at 266 nm. The FTIR peaks in the fingerprint regions confirmed the cap** of the extract containing flavonoids and phenolic compounds over the SeNPs. The particle size analysis of SeNPs revealed a size range of 30–120 nm, and the zeta potential was found to be − 6.32 mV. The XRD data confirmed the crystalline nature of SeNPs, and its crystallite size was calculated as 29.40 nm. Analysis of surface morphology using SEM showed oval-shaped particles with an average particle size of 80 nm, as evidenced by particle size results. The SeNPs formation was further confirmed by EDAX results. Hemocompatibility studies showed less than 5% lysis at a higher concentration of 100 µg/mL. Peripheral blood mononuclear cells treated with 100 µg/mL of biosynthesized SeNPs showed cell viability similar to that of untreated cells. Hence, we conclude that eco-friendly SeNPs could be used as potential candidates in various biomedical applications, including therapeutics and diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., & Rizzolio, F. (2019). The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules. https://doi.org/10.3390/molecules25010112

    Article  PubMed  PubMed Central  Google Scholar 

  2. Benelmekki, M. (2021). Introduction to nanoparticles and nanotechnology. Designing hybrid nanoparticles (second edition). https://doi.org/10.1088/978-0-7503-3587-4ch1

    Article  ADS  Google Scholar 

  3. Ahmad, N., Ali, S., Abbas, M., Fazal, H., Saqib, S., Ali, A., … Sohail. (2023). Antimicrobial efficacy of Mentha piperata-derived biogenic zinc oxide nanoparticles against UTI-resistant pathogens. Scientific reports, 13(1), 1–16.

  4. Kaleem, M., Minhas, L. A., Hashmi, M. Z., Ali, M. A., Mahmoud, R. M., Saqib, S., … Samad Mumtaz, A. (2023). Biosorption of cadmium and lead by dry biomass of sp. MK-11: Kinetic and isotherm study. Molecules , 28(5). https://doi.org/10.3390/molecules28052292

  5. Sharif, M. S., Hameed, H., Waheed, A., Tariq, M., Afreen, A., Kamal, A., … Zaman, W. (2023). Biofabrication of FeO Nanoparticles from Spirogyra hyalina and Ajuga bracteosa and their antibacterial applications. Molecules , 28(8). https://doi.org/10.3390/molecules28083403

  6. Khurana, A., Tekula, S., Saifi, M. A., Venkatesh, P., & Godugu, C. (2019). Therapeutic applications of selenium nanoparticles. Biomedicine & Pharmacotherapy. https://doi.org/10.1016/j.biopha.2018.12.146

    Article  Google Scholar 

  7. Saravanan, A., Senthil Kumar, P., Jeevanantham, S., Karishma, S., Tajsabreen, B., Yaashikaa, P. R., & Reshma, B. (2021). Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere, 280, 130595.

    Article  CAS  PubMed  Google Scholar 

  8. Wang, Y., Zhang, Y., Guo, Y., Lu, J., Veeraraghavan, V. P., Mohan, S. K., … Yu, X. (2019). Synthesis of zinc oxide nanoparticles from Marsdenia tenacissima inhibits the cell proliferation and induces apoptosis in laryngeal cancer cells (Hep-2). Journal of photochemistry and photobiology. B, Biology, 201, 111624.

  9. Ahmad, A., Dhanalekshmi, U. M., Koumaravelu, K., Francis, A. P., Khan, S. A., Abuzinadah, M. F., & Selvasudha, N. (2023). A study on pharmacokinetic functionalities and safety margins of an optimized simvastatin nanoformulation. Pharmaceuticals , 16(3). https://doi.org/10.3390/ph16030380

  10. Cui, D., Liang, T., Sun, L., Meng, L., Yang, C., Wang, L., … Li, Q. (2018). Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis. Pharmaceutical Biology. https://doi.org/10.1080/13880209.2018.1510974

  11. Alipour, S., Kalari, S., Morowvat, M. H., Sabahi, Z., & Dehshahri, A. (2021). Green synthesis of selenium nanoparticles by Cyanobacterium Spirulina platensis (abdf2224): Cultivation condition quality controls. BioMed Research International. https://doi.org/10.1155/2021/6635297

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shoeibi, S., Mozdziak, P., & Golkar-Narenji, A. (2017). Biogenesis of selenium nanoparticles using green chemistry. Topics in Current Chemistry. https://doi.org/10.1007/s41061-017-0176-x

    Article  PubMed  Google Scholar 

  13. Vineeth Kumar, C. M., Karthick, V., Inbakandan, D., Ganesh Kumar, V., Rene, E. R., Stalin Dhas, T., … Anjali Das, C. G. (2022). Effect of selenium nanoparticles induced toxicity on the marine diatom Chaetoceros gracilis. Process Safety and Environmental Protection, 163, 200–209.

  14. Alvi, G. B., Iqbal, M. S., Ghaith, M. M. S., Haseeb, A., Ahmed, B., & Qadir, M. I. (2021). Biogenic selenium nanoparticles (SeNPs) from citrus fruit have anti-bacterial activities. Scientific Reports. https://doi.org/10.1038/s41598-021-84099-8

    Article  PubMed  PubMed Central  Google Scholar 

  15. Naaziya, M., Biju, T. S., Francis, A. P., Veeraraghavan, V. P., Gayathri, R., & Sankaran, K. (2023). Synthesis, characterization and in-vitro biological studies of curcumin decorated biogenic selenium nanoparticles. Nano LIFE. https://doi.org/10.1142/s1793984423500137

    Article  Google Scholar 

  16. Cittrarasu, V., Kaliannan, D., Dharman, K., Maluventhen, V., Easwaran, M., Liu, W. C., … Arumugam, M. (2021). Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Scientific Reports. https://doi.org/10.1038/s41598-020-80327-9

  17. Dolečková, I., Rárová, L., Grúz, J., Vondrusová, M., Strnad, M., & Kryštof, V. (2012). Antiproliferative and antiangiogenic effects of flavone eupatorin, an active constituent of chloroform extract of Orthosiphon stamineus leaves. Fitoterapia, 83(6), 1000–1007.

    Article  PubMed  Google Scholar 

  18. Adam, Y., Somchit, M. N., Sulaiman, M. R., Nasaruddin, A. A., Zuraini, A., Bustamam, A. A., & Zakaria, Z. A. (2009). Diuretic properties of Orthosiphon stamineus Benth. Journal of Ethnopharmacology. https://doi.org/10.1016/j.jep.2009.04.014

    Article  PubMed  Google Scholar 

  19. Wang, Q., Wang, J., Li, N., Liu, J., Zhou, J., Zhuang, P., & Chen, H. (2022). A systematic review of Orthosiphon stamineus Benth. in the treatment of diabetes and its complications. Molecules. https://doi.org/10.3390/molecules27020444

  20. Ameer, O. Z., Salman, I. M., Asmawi, M. Z., Ibraheem, Z. O., & Yam, M. F. (2012). Orthosiphon stamineus: Traditional uses, phytochemistry, pharmacology, and toxicology. Journal of medicinal food, 15(8), 678–690.

    Article  PubMed  Google Scholar 

  21. Olah, N.-K., Radu, L., Mogoşan, C., Hanganu, D., & Gocan, S. (2003). Phytochemical and pharmacological studies on Orthosiphon stamineus Benth. (Lamiaceae) hydroalcoholic extracts. Journal of Pharmaceutical and Biomedical Analysis. https://doi.org/10.1016/s0731-7085(03)00227-9

  22. Ghedira, K., & Goetz, P. (2015). Orthosiphon stamineus Benth.: Orthosiphon (Lamiaceae). Phytothérapie, 13(1), 39–44.

    Article  Google Scholar 

  23. Asraf, M. H., Sani, N. S., Williams, C. D., Jemon, K., & Nik Malek, N. A. N. (2022). In situ biosynthesized silver nanoparticle-incorporated synthesized zeolite A using Orthosiphon aristatus extract for in vitro antibacterial wound healing. Particuology, 67, 27–34.

    Article  CAS  Google Scholar 

  24. Francis, A. P., Gurudevan, S., & Jayakrishnan, A. (2018). Synthetic polymannose as a drug carrier: Synthesis, toxicity and anti-fungal activity of polymannose-amphotericin B conjugates. Journal of biomaterials science. Polymer edition, 29(13), 1529–1548.

    Article  CAS  PubMed  Google Scholar 

  25. Saqib, S., Nazeer, A., Ali, M., Zaman, W., Younas, M., Shahzad, A., … Nisar, M. (2022). Catalytic potential of endophytes facilitates synthesis of biometallic zinc oxide nanoparticles for agricultural application. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine, 35(5), 967–985.

  26. Saqib, S., Faryad, S., Afridi, M. I., Arshad, B., Younas, M., Naeem, M., … El-Abedin, T. K. Z. (2022). Bimetallic assembled silver nanoparticles impregnated in Aspergillus fumigatus extract damage the bacterial membrane surface and release cellular contents. Coatings World, 12(10), 1505.

  27. Anu, K., Singaravelu, G., Murugan, K., & Benelli, G. (2017). Green-synthesis of selenium nanoparticles using garlic cloves (Allium sativum): Biophysical characterization and cytotoxicity on vero cells. Journal of Cluster Science. https://doi.org/10.1007/s10876-016-1123-7

    Article  Google Scholar 

  28. Srivastava, N., & Mukhopadhyay, M. (2015). Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess and Biosystems Engineering. https://doi.org/10.1007/s00449-015-1413-8

    Article  PubMed  Google Scholar 

  29. Shahabadi, N., Zendehcheshm, S., & Khademi, F. (2021). Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins. Biotechnology Reports, 30, e00615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alagesan, V., & Venugopal, S. (2019). Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. BioNanoScience. https://doi.org/10.1007/s12668-018-0566-8

    Article  Google Scholar 

  31. Ramamurthy, C. H., Sampath, K. S., Arunkumar, P., Suresh Kumar, M., Sujatha, V., Premkumar, K., & Thirunavukkarasu, C. (2013). Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess and Biosystems Engineering. https://doi.org/10.1007/s00449-012-0867-1

    Article  PubMed  Google Scholar 

  32. Salem, S., Salem, S. S., Fouda, M. M. G., Fouda, A., Awad, M. A., Al-Olayan, E. M., … Shaheen, T. I. (2021). Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. Journal of Cluster Science. https://doi.org/10.1007/s10876-020-01794-8

  33. Bibi, S., Munawar, A., Ishaq, M. W., Zaman, F., Abid, M., Rafi, A., … Khan, I. U. (2024). Controlling the size, shape, and stability of SeNPs by bromelain: Improved antioxidant, anti-bacterial and anti-cancer activities. Journal of molecular structure, 1295(136633), 136633.

  34. Ullah, A., Yin, X., Wang, F., Xu, B., Mirani, Z. A., Xu, B., … Naveed, M. (2021). Biosynthesis of selenium nanoparticles (via Bacillus subtilis BSN313), and their isolation, characterization, and bioactivities. Molecules. https://doi.org/10.3390/molecules26185559

  35. Alam, H., Khatoon, N., Raza, M., Ghosh, P. C., & Sardar, M. (2018). Synthesis and characterization of nano selenium using plant biomolecules and their potential applications. BioNanoScience, 9(1), 96–104.

    Article  Google Scholar 

  36. Tag, H. M., Saddiq, A. A., Alkinani, M., & Hagagy, N. (2021). Biosynthesis of silver nanoparticles using Haloferax sp. NRS1: Image analysis, characterization, in vitro thrombolysis and cytotoxicity. AMB Express, 11(1), 75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Francis, A. P., Ganapathy, S., Palla, V. R., Murthy, P. B., & Devasena, T. (2015). Future of nano bisdemethoxy curcumin analog: Guaranteeing safer intravenous delivery. Environmental toxicology and pharmacology, 39(1), 467–474.

    Article  CAS  PubMed  Google Scholar 

  38. Cruz, G. G. D. L., Rodríguez-Fragoso, P., Reyes-Esparza, J., Rodríguez-López, A., Gómez-Cansino, R., & Rodriguez-Fragoso, L. (2018). Interaction of nanoparticles with blood components and associated pathophysiological effects. In A. C. Gomes & M. P. Sarria (Eds.), Unraveling the safety profile of nanoscale particles and materials - From biomedical to environmental applications (pp. 37–59). InTech.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the laboratory and characterization facilities provided by Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai-600077.

Funding

This work was supported by National Contracting Company India Pvt. Ltd., Chennai, Tamil Nadu, India, and Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077.

Author information

Authors and Affiliations

Authors

Contributions

STI: conceptualization, methodology, writing—original draft preparation; GR: conceptualization, reviewing and editing; KS: methodology, writing—original draft preparation; VPV: data curation, reviewing and editing; APF: conceptualization, methodology, data curation, reviewing and editing, supervision.

Corresponding author

Correspondence to Arul Prakash Francis.

Ethics declarations

Ethical Approval

The current study was approved by the Institute Human Ethical Committee.

Informed Consent

None.

Research Involving Humans and Animals Statement

None.

Consent for Publication

All authors have approved the submission of the manuscript. The presented data are original and without fabrication and manipulation.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamanna, I.S., Gayathri, R., Sankaran, K. et al. Eco-friendly Synthesis of Selenium Nanoparticles Using Orthosiphon stamineus Leaf Extract and Its Biocompatibility Studies. BioNanoSci. 14, 37–44 (2024). https://doi.org/10.1007/s12668-023-01277-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01277-w

Keywords

Navigation