Log in

Biosafety, Optimization, and Application of Bioflocculant-Synthesized Zinc Oxide Nanoparticles

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Biosynthesis of zinc oxide (ZnO) nanoparticles using natural products seems to be an interesting research to study in nanotechnology, as they (ZnO nanoparticles) are biocompatible and stable in nature, owing to their wide applications industrially. In this study, the bioflocculant-synthesized zinc oxide nanoparticles were used in the removal of various pollutants and dyes from wastewater and solutions. ZnO nanoparticles were synthesized using a bioflocculant from two bacteria and assessed for flocculation and antimicrobial activity properties. Cytotoxicity effects of the ZnO nanoparticles were also evaluated using human embryonic kidney (HEK 293) and breast cancer (MFC 7) cell lines. Biosynthesized ZnO nanoparticles were characterized using different spectroscopic and microscopic methods. An optimum flocculating activity (88%) was obtained with 0.2 mg/mL ZnO nanoparticles concentration at pH 3 and LiCl as a stimulating agent. Biosynthesized ZnO nanoparticles are thermally stable with 75% flocculating activity retained at 100 °C and 71% after autoclaved (121 °C for 15 min). The as-synthesized nanoparticles showed significant cytotoxic effects in HEK 293 and MFC 7 cell lines in a concentration-dependent manner. Biosynthesized ZnO nanoparticles revealed strong antimicrobial potential on both Gram-positive and Gram-negative pathogenic bacteria tested. The nanoparticles exhibited dye removal efficiency greater than 89% of all tested dyes. ZnO nanoparticles showed great removal efficiencies of various pollutants in wastewater. Biosynthesized ZnO nanoparticles have great potential to remove both biological oxygen demand (BOD) and chemical oxygen demand (COD) compared to traditional flocculants. Therefore, as-synthesized ZnO nanoparticles have prospective to replace chemical flocculants in the purification of industrial wastewater.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The authors declare that all relevant data supporting the findings of the study are available within the article.

References

  1. Vörösmarty, C., Lettenmaier, D., Leveque, C., Meybeck, M., Pahl-Wostl, C., Alcamo, J., & Kabat, P. (2004). Humans transforming the global water system. Eos Transactions American Geophysical Union, 85(48), 509–514.

    Article  Google Scholar 

  2. Dlamini, N. G., Basson, A. K., Pullabhotla, V. S. R. R., & Simonis, J. J. (2020). Biosynthesis of bioflocculant passivated copper nanoparticles, characterization, and application. Journal of Polymer, 12(7), 1618–1641.

    Google Scholar 

  3. Ntombela, Z. G., Mthembu, N. S., Gasa, N. L., Basson, A. K., Simonis, J. J., Madoroba, E., & Pullabhotla, V. S. R. R. (2019). Isolation, identification, and characterization of a bioflocculant producing strain, Bacillus sp. KC782848.1, from uMlalazi catchment, Mtunzini, KwaZulu-Natal. Bioscience Research, 6(4), 3664–3685.

    Google Scholar 

  4. Sun, P., Hui, C., Bai, N., Yang, S., Wan, L., Zhang, Q., & Zhao, Y.-H. (2015). Revealing the characteristics of a novel bioflocculant and its flocculation performance in Microcystis aeruginosa removal. Scientific Reports, 5(17465), 1–12.

    Google Scholar 

  5. Lee, D.-J., & Chang, Y.-R. (2018). Bioflocculants from isolated stains: A research update. Journal of Taiwan Institute of Chemical Engineers, 87, 211–215.

    Article  Google Scholar 

  6. Maliehe, T. S., Masuku, S. K., & Basson, A. K. (2020). Synthesis of TKT-g-PAM 5 copolymer via microwave initiative for treatment of mine wastewater. Bioscience Research Journal, 17(3), 1586–1598.

    Google Scholar 

  7. Ugbenyen, A., & Okoh, A. (2014). Characteristics of a bioflocculant produced by a consortium of Cobetia and Bacillus species and its application in the treatment of wastewaters. Water SA, 40, 140–144.

    Article  Google Scholar 

  8. Bhardwaj, A., Sharma, G., & Gupta, S. (2020). Nanotechnology applications and synthesis of graphene as nanomaterial for nanoelectronics. In I. Bhushan, V. Singh, & D. Tripathi (Eds.), Nanomaterials and Environmental Biotechnology (pp. 251–269). Cham: Spring.

    Chapter  Google Scholar 

  9. Phull, A. R., Abbas, Q., Ali, A., Raza, H., Zia, M., & Haq, I. U. (2016). Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliate. Future Journal of Pharmaceutical Sciences, 2, 31–36.

    Article  Google Scholar 

  10. Dash, D. K., Panik, R. K., Sahu, A. K., & Tripathi, V. (2020). Role of nanobiotechnology in drugs discovery, development, and molecular diagnostic. In M. Stoytcheva & R. Zlatec (Eds.), Applications of Nanobiotechnology (Vol. 655, pp. 37–43). London: IntechOp.

    Google Scholar 

  11. Aldalbahi, A., Alterary, S., Almoghim, R. A. A., Awad, M. A., Aldosari, N. S., Aghannam, S. F., Alabdan, A. N., Alharbi, S., Alateeq, B. A. M., Al Mohsen, A. A., Alkathiri, M. A., & Alrashed, R. A. (2020). Greener synthesis of zinc oxide nanoparticles: Characterization and multifaceted applications. Molecules, 25(18), 1–14.

    Article  Google Scholar 

  12. Shinde, A. J., & More, H. N. (2009). Nanoparticles: As carriers for drug delivery system. Research Journal in Pharmacy and Technology, 1, 80–86.

    Google Scholar 

  13. Devatha, C. P., Thalla, A. K., & Katte, S. Y. (2016). Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic wastewater. Journal of Cleaner Production, 139, 1425–1435.

    Article  Google Scholar 

  14. Que, X., Alverez, P. J., & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water Research, 47, 3931–3946.

    Article  Google Scholar 

  15. Kolář, M., Urbánek, K., & Látal, T. (2001). Antibiotic selective pressure and development of bacterial resistance. International Journal of Antimicrobial Agents, 17, 357–363.

    Article  Google Scholar 

  16. Shaikh, F., Panhwar, Q. K., Balouch, A., Ali, S., Panhwar, W. A., & Sheikh, F. (2020). Synthesis of zinc oxide nanoparticles and their functionalisation with chrysin: Exploration of its applications. International Journal of Environmental Analytical Chemistry, 1-10.https://doi.org/10.1080/03067319.2020.1742889

  17. Chauhan, R., Kumar, A., & Chaudhary, R. P. (2012). Structures and optical properties of Zn1-xNiOx nanoparticles by coprecipitation method. Research on Chemical Intermediates, 38(7), 1483–1493.

    Article  Google Scholar 

  18. Vigneshwaran, N., Kumar, A., Kathe, A. A., Varadarajan, P. V., & Prasad, V. (2006). Functional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites. Nanotechnology, 17(20), 5087–5095.

    Article  Google Scholar 

  19. Wahab, R., Mishra, A., Yun, S.-I., Kim, Y.-S., & Shin, H.-S. (2010). Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route. Applied Microbiology and Biotechnology, 87, 1917–1925.

    Article  Google Scholar 

  20. Stevanović, M. M., Škapin, S. D., Bračko, I., Milenković, M., Petković, J., Filipič, M., & Uskoković, D. P. (2012). Poly(lactide-co-glycolide)/silver nanoparticles: Synthesis, characterization, antimictrobial activity, cytotoxicity assessment and ROS-inducing potential. Polymer, 53, 2818–2828.

    Article  Google Scholar 

  21. Wang, D., Guo, D., Bi, H., Wu, Q., Tian, Q., & Du, Y. (2013). Zinc oxide nanoparticles inhibit Ca2+-ATPase expression in human lens epithelial cells under UVB irradiation. Toxicology in Vitro, 27(8), 2117–2126.

    Article  Google Scholar 

  22. Zhang, J., Qin, X., & Wang, B. (2017). Zinc oxide nanoparticles harness autophagy to induce cell death in lung epithelial cells. Cell Death & Diseases, 8(7), 1–32.

    Google Scholar 

  23. Akapo, C. S. O., Ntombela, Z. G., Pullabhotla, V. S. R. R., & Basson, A. K. (2019). Isolation, optimization, characterization, and application of bioflocculant BA-CGB produced by novel Bacillus atrophaeus isolated from Richards Bay Harbour, South Africa. Bioscience Research Journal, 16(4), 3873–3902.

    Google Scholar 

  24. Zaki, S., Eltarahony, M., Elkady, M., & Abd-El-Haleem, D. (2014). The use of bioflocculant and bioflocculant-producing Bacillus mojavensis strain 32A to synthesize silver nanoparticles. Journal of Nanomaterials, 2014, 1–7.

    Article  Google Scholar 

  25. Kurane, R., Hatamochi, K., & Kakuno, T. (1994). Production of a bioflocculant by Rhodococcuse erythropolis S-1 grown on alcohols. Bioscience, Biotechnology, and Biochemistry, 58(2), 428–429.

    Article  Google Scholar 

  26. Karthiga, D., & Natarajan, K. A. (2015). Isolation and characterization of a bioflocculant from Bacillus megaterium for turbidity and arsenic removal. Minerals and Metallurgical Processing, 32(4), 222–229.

    Google Scholar 

  27. Makapela, B., Okaiyeto, K., Ncedo, N., Nwodo, U. U., Green, E., Mabinya, L. V., & Okoh, A. I. (2016). Assessment of Bacillus poilus isolated from freshwater milieu for bioflocculant production. Applied Sciences, 6(211), 1–20.

    Google Scholar 

  28. Maliehe, T. S., Basson, A. K., & Dlamini, N. G. (2019). Removal of pollutants in mine wastewater by a non-cytotoxic polymeric bioflocculant from Alcaligenes faecalis HCB2. International Journal of Environmental Research and Public Health, 16(20), 4001.

    Article  Google Scholar 

  29. Abu Tawila, Z. M. M., Salmah, I., Abu Amr, S. S., & Abou Elkhair, E. K. (2019). A novel efficient bioflocculant QZ-7 for the removal of heavy metals from industrial wastewater. RSC Advances, 9, 27825–27834.

    Article  Google Scholar 

  30. Eloff, J. N. (1998). A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Plant Medica, 64, 711–713.

    Article  Google Scholar 

  31. Daniels, A. N., & Singh, M. (2019). Sterically stabilized siRNA: Gold nanocomplexes enhance c-MYC silencing in a breast cancer cell model. Nanomedicine, 14(11), 1387–1401.

    Article  Google Scholar 

  32. Ntombela, Z. G., Basson, A. K., & Pullabhotla, V. S. R. R. (2022). Biosynthesis and characterization of zinc oxide nanoparticles using bioflocculant produced by a consortium of two marine bacteria. Research Journal of Chemistry and Environment, 26(5), 1–11.

    Article  Google Scholar 

  33. Ismail, M. A., Tah, K. K., Modwi, A., & Khezami, L. (2018). ZnO nanoparticles: Surface and X-ray profile analysis. Journal of Ovonic Research, 14(5), 381–393.

    Google Scholar 

  34. Ntombela, Z. G., Thwala, T. T., Kunene, X. N., Basson, A. K., Madoroba, E., & Pullabhotla, V. S. R. R. (2020). Production and characterization of a bioflocculant produced by the consortium of Bacillus safensis and Bacillus sp. isolated from uMlalazi catchment, Mthunzini area, KwaZulu-Natal. Bioscience Research Journal, 17(4), 2504–2524.

    Google Scholar 

  35. Mohammed, J. N., & Wan Dagang, W. R. (2019). Role of cationization in bioflocculant efficiency: A review. Environmental Processes, 6, 355–367.

    Article  Google Scholar 

  36. Gong, W., Wang, S., Sun, X., Liu, X., Yue, Q., & Gao, B. (2008). Bioflocculant production by culture of Serratia ficaria and its application in wastewater treatment. Bioresource Technology, 99, 4668–4674.

    Article  Google Scholar 

  37. Kothari, R., Pathak, V. V., Pandey, A., Ahmad, S., Srivastava, C., & Tyagi, V. V. (2017). A novel method to harvest Chlorella sp. via low cost bioflocculant: Influence of temperature with kinetic and thermodynamic functions. Bioresource Technology, 225, 84–89.

    Article  Google Scholar 

  38. Yang, Z., Wang, W., & Liu, S. (2017). Flocculation of coal waste slurry using bioflocculant produced by Azotobacter chroococcum. Energy & Fuels, 31, 1460–1467.

    Article  Google Scholar 

  39. Peng, L., Yang, C., Zeng, G., Wang, L., Dai, C., Long, Z., Liu, H., & Zhong, Y. (2014). Characterization and application of bioflocculant prepared by Rhodococcus erythropolis using sludge and livestock wastewater as cheap culture media. Applied Microbiology and Biotechnology, 98, 6847–6858.

    Article  Google Scholar 

  40. Maliehe, T. S., Basson, A. K., & Singh, M. (2020). Wastewater treatment by a novel bioflocculant from a consortium of Bacillus pumilus JX860616 and Bacillus subtilis CSM5. Bioscience Research Journal, 17(3), 1610–1625.

    Google Scholar 

  41. Okaiyeto, K., Nwodo, U. U., Mabinya, L. V., & Okoh, A. I. (2014). Evaluation of the flocculation potential and characterization of bioflocculant produced by Micrococcus sp. Leo. Applied Biochemistry and Microbiology, 50, 601–608.

    Article  Google Scholar 

  42. Ma, L., Liang, J., Liu, Y., Zhang, Y., Ma, P., Pan, Z., & Jiang, W. (2020). Production of a bioflocculant from Enterobacter sp. P3 using brewery wastewater as substrate and its application in fracturing flow back water treatment. Environmental Science and Pollution Research, 27, 18242–18253.

    Article  Google Scholar 

  43. Li, Y., Xu, Y., Liu, L., Jiang, X., Zhang, K., Zheng, T., & Wang, H. (2016). First evidence of bioflocculant from Shinella albus with flocculation activity on harvesting Chlorella vulgaris biomass. Bioresource Technology, 218, 807–815.

    Article  Google Scholar 

  44. Bisht, V., & Lal, B. (2019). Exploration of performance kinetics and mechanism of action of a potential novel bioflocculant BF-VB2 on clay and dye wastewater flocculation. Frontiers in Microbiology, 10(1288), 1–18. https://doi.org/10.3389/fmicb.2019.01288

    Article  Google Scholar 

  45. Zaki, S. A., Elkady, M. F., Farag, S., & Abd-El-Haleem, D. (2013). Characterization and flocculation properties of a carbohydrate bioflocculant from a newly isolated Bacillus velezensis 40B. Journal of Environmental Biology, 34, 51–58.

    Google Scholar 

  46. Wang, L., Ma, F., Qu, Y., Sun, D., Li, A., Guo, J., & Yu, B. (2011). Characterization of a compound bioflocculant produced by mixed culture of Rhizobium radiobacter F2 and Bacillus sphaeicus F6. World Journal of Microbiology and Biotechnology, 27, 2559–2565.

    Article  Google Scholar 

  47. Gao, J., Bao, H. Y., **n, M. X., Liu, Y. X., Li, Q., & Zhang, Y. F. (2006). Characterization of a bioflocculant from a newly isolated Vagococcus sp. W31. Journal of Zhejiang University. Science. B, 7(3), 186–192.

    Article  Google Scholar 

  48. Ntsangani, N., Okaiyeto, K., Nwodo, U. U., Olaniran, A. O., Mabinya, L. V., & Okoh, A. I. (2017). Bioflocculation potentials of a uronic acid-containing glycoprotein produced by Bacillus sp. AEMREG4 isolated from Tyhume River, South Africa. 3 Biotech, 7(78), 1–27.

    Google Scholar 

  49. Ma, L., Liang, J., Wang, S., Yang, B., Chen, M., & Liu, Y. (2017). Production of a bioflocculant from Klebsiella sp. OS-1 using brewery wastewater as a source. Environmental Technology, 40(1), 44–52.

    Article  Google Scholar 

  50. Tawila, M. A. Z., Salmah, B. I., Arezoo, D., & Mohammed, M. U. (2018). Production and characterization of a bioflocculant produced by Bacillus salmalaya 139SI-7 and its applications in wastewater treatment. Molecules, 23(2689), 1–17.

    Google Scholar 

  51. Ntombela, Z. G., Basson, A. K., Madoroba, E., Pullabhotla, V. S. R. R., & Moganavelli, S. (2021). Removal efficiency of a thermostable and non-toxic bioflocculant produced by a consortium of two marine bacteria. Journal by Innovative Scientific Information & Services Network, 18(1), 188–207.

    Google Scholar 

  52. Yusof, H. M., Rahman, N. A., Mohamad, R., Zaidan, A. H., & Samsudin, A. A. (2020). Biosynthesis of zinc oxide nanoparticles by cell-biomass and supernatant of Lactobacillus plantarum TA4 and its antibacterial and biocompatibility properties. Scientific Reports, 10(19996), 1–13.

    Google Scholar 

  53. Elmi, F., Alinezhad, H., Moulana, Z., Salehian, F., Tavakkoli, S. M., Asgharpour, F., Fallah, H., & Elmi, M. M. (2014). The use of antibacterial activity of ZnO nanoparticles in the treatment of municipal wastewater. Water Science and Technology, 70(5), 763–770.

    Article  Google Scholar 

  54. Yusof, H. M., Mohamad, R., Zaidan, U. H., & Rahman, N. A. A. (2019). Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review. Journal of Animal Science and Biotechnology, 10(57), 1–22. https://doi.org/10.1186/s40104-019-0368-z

    Article  Google Scholar 

  55. Siddiqi, K. S., Ur Rahman, A., Tajuddin, A., & Husen, A. (2018). Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Research Letters, 13, 1–13.

    Article  Google Scholar 

  56. Pati, R., Mahta, R. K., Mohanty, S., Padhi, A., Sengupta, M., Vaseeheran, B., Goswami, C., & Sonawane, A. (2014). Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antimicrobial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine, 10, 1195–1208.

    Article  Google Scholar 

  57. Balraj, B., Senthikumar, N., Siva, C., Krithikadevi, R., Julie, A., & Potheher, I. V. (2017). Synthesis and characterization of zinc oxide nanoparticles using marine Streptomyces sp. with its investigations on anticancer and antibacterial activity. Research on Chemical Intermediates, 43, 2367–2376.

    Article  Google Scholar 

  58. Reshma, V. G., & Mohanan, P. V. (2017). Cellular interactions of zinc oxide nanoparticles with human embryonic kidney (HEK 293) cells. Colliods and surfurce. B, Biointerfaces, 157, 182–190.

    Article  Google Scholar 

  59. Deng, X., Luan, Q., Chen, W., Wang, Y., Wu, M., & Zhang, H. (2009). Nanosized zinc oxide particles induced neural stem cell apoptosis. Nanotechnology, 20(11), 115101.

    Article  Google Scholar 

  60. Kumar, A., Zafaryab, M. D., Umar, A., Rizvi, M. A., Fouad, H., Ansari, Z. A., & Ansari, S. G. (2015). Relief of oxidative stress using curcumin and glutathione functionalized ZnO nanoparticles in HEK 293 cell line. Journal of Biomedical Nanotechnology, 11, 1–14.

    Article  Google Scholar 

  61. Yang, Y., Song, Zh., Wu, W., Xu, A., Lv, S., & Ji, S. (2020). ZnO quantum dots induced oxidative stress and apoptosis in Hela and HEK 293T cell lines. Frontiers in Pharmacology, 11(131), 1–8.

    Google Scholar 

  62. Prashant, G. K., Prashant, P. A., & Utpal, B. (2015). In vitro antibacterial and cytotoxicity studies of ZnO nanopowders prepared by combustion assisted facile green synthesis. Karbala International Journal of Modern Science, 1(2), 67–77.

    Article  Google Scholar 

  63. Umar, H., Kavaz, D., & Rizaner, N. (2019). Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. International Journal of Nanomedicine, 14, 87–100.

    Article  Google Scholar 

  64. Khan, Z. U., Saddiq, H. M., Shah, N. S., Khan, A. U., Mohammad, N., Hassan, S. U., & Ullah, F. (2019). Greener synthesis of zinc oxide nanoparticles using Trianthema portulacastrum extract and evaluation of its photocatalytic and biological applications. Journal of Photochemistry Photobiology B: Biology, 192, 147–157.

    Article  Google Scholar 

  65. Salehizadeh, H., & Shojaosadati, S. (2001). Extracellular biopolymeric flocculants: Recent trends and biotechnological importance. Biotechnology Advances, 19, 371–385.

    Article  Google Scholar 

  66. Dicks, R. G. (2011). Microalgae flocculation and sedimentation by physico-chemical property exploitation. Masters Dissertation. University of Cape Town, South Africa.

  67. Abd El-Salam, A. E., Abd-El-Haleem, D., Youssef, A. S., Zaki, S., Abu-Elreesh, G., & El-Assar, S. A. (2017). Isolation, characterization, optimization, immobilization, and batch fermentation of bioflocculant produced by Bacillus aryabhattai strain PSK1. Journal of Genetic Engineering and Biotechnology, 15, 335–344.

    Article  Google Scholar 

  68. Tiwary, R. (2001). Environmental impact of coal mining on water regime and its management. Water, Air and Soil Pollution, 132, 185–199.

    Article  Google Scholar 

  69. Davies, A. P., Shokouhian, M., Sharma, H., & Minami, C. (2006). Water quality improvement through bioretention media; Nitrogen and phosphorous removal. Water Environmental Research, 78, 284–293.

    Article  Google Scholar 

  70. Kumar, M., & Puri, A. (2012). A review of permissible limits of drinking water. Indian Journal of Occupational Environmental Medicine, 16, 40–51.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Council for Scientific and Industrial Research (CSIR) for their support in doing SEM-EDX analysis to characterize the nanoparticles.

Funding

Zuzingcebo G. Ntombela received funding the study from the University of Zululand for in the form of Employee study benefits and the Department of Biochemistry and Microbiology. Rajasekhar Pullabhotla received financial support from the National Research Foundation (NRF, South Africa) in the form of the Incentive Fund Grant (Grant No: 103691) and Research Developmental Grant for Rated Researchers (112145).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: BAK and PVSR; formal analysis: NZG and PVSR; investigation: NZG, supervision: BAK and PVSR; writing – original draft: NZG; writing – review and editing: PVSR and BAK.

Corresponding author

Correspondence to Viswanadha Srirama Rajasekhar Pullabhotla.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntombela, Z.G., Pullabhotla, V.S.R. & Basson, A.K. Biosafety, Optimization, and Application of Bioflocculant-Synthesized Zinc Oxide Nanoparticles. BioNanoSci. 12, 1289–1304 (2022). https://doi.org/10.1007/s12668-022-01017-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-022-01017-6

Keywords

Navigation