Log in

Green Synthesis, Characterization and In Vivo Evaluation of White Tea Silver Nanoparticles with 5-Fluorouracil on Colorectal Cancer

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

White tea (WT) has the highest amount of catechin which previously was found to enhance anti-cancer activity. To enhance the bioavailability of WT, silver nanoparticle (AgNP) was used to synthesize WT nanoparticle (WTNP). This present study aimed to determine the effectiveness of WTNP alone and co-administered with 5FU in the prophylactic study. WTNP was characterized by UV–Vis spectra, X-ray diffraction (XRD) spectra, transmission electron microscope (TEM) and Fourier-transform infrared spectroscopy (FTIR) and tested for their acute toxicity. In animal studies, all groups except the naïve group were given once a week 65 mg/kg of 1,2-dimethylhydrazine (DMH) subcutaneously, intraperitoneal injection of 50 mg/kg 5FU and daily administration of DMH 50 mg/kg WT and 5FU WTNPs. Aberrant crypt foci (ACF) and histology were determined and analysed. WTNP showed circular and pseudospherical shaped and 25–50 nm size range with no acute toxicity observed on rats. The DMH group was the highest in average ACF count (37.3 ± 3.18), which ACF was shown to decrease using the treatment, WT group (16.67 ± 3.28), 5FU monotherapy (5.67 ± 2.19) and WTFU (6.33 ± 1.33). The highest AC frequency was found at the DMH group (24.67 ± 1.20, 12.67 ± 1.45) compared to other groups. The chemo-suppressive effect of WTNP and WTFU combined effects was observed in the present study. WTNP expresses anti-cancer properties; however, it does not produce any synergistic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Keum, N., & Giovannucci, E. (2019). Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nature Reviews Gastroenterology & Hepatology, 16(12), 713–732. https://doi.org/10.1038/s41575-019-0189-8

    Article  Google Scholar 

  2. Marley, A. R., & Nan, H. (2016). Epidemiology of colorectal cancer. International journal of molecular epidemiology and genetics, 7(3), 105–114.

    Google Scholar 

  3. Krohe, M., Eek, D., Mazar, I., Horsfield, A., Pompilus, F., Friebe, R., & Shields, A. (2016). Patient-reported preferences for oral versus intravenous administration for the treatment of cancer: A review of the literature. Patient Preference and Adherence, 10, 1609–1621. https://doi.org/10.2147/PPA.S106629

    Article  Google Scholar 

  4. Gelperina, S., Kisich, K., Iseman, M. D., & Heifets, L. (2005). The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. American Journal of Respiratory and Critical Care Medicine, 172(12), 1487–1490. https://doi.org/10.1164/rccm.200504-613PP

    Article  Google Scholar 

  5. Sanlier, N., Atik, İ, & Atik, A. (2018). A minireview of effects of white tea consumption on diseases. Trends in Food Science and Technology, 82(September), 82–88. https://doi.org/10.1016/j.tifs.2018.10.004

    Article  Google Scholar 

  6. Hilal, Y., & Engelhardt, U. (2007). Characterisation of white tea - Comparison to green and black tea. Journal fur Verbraucherschutz und Lebensmittelsicherheit, 2(4), 414–421. https://doi.org/10.1007/s00003-007-0250-3

    Article  Google Scholar 

  7. Qiao, J., Kong, X., Kong, A., & Han, M. (2014). Pharmacokinetics and biotransformation of tea polyphenols. Current Drug Metabolism, 15(1), 30–36. https://doi.org/10.2174/1389200214666131229111336

    Article  Google Scholar 

  8. Gong, R., & Chen, G. (2016). Preparation and application of functionalized nano drug carriers. Saudi Pharmaceutical Journal, 24(3), 254–257. https://doi.org/10.1016/j.jsps.2016.04.010

    Article  Google Scholar 

  9. Gwinn, M. R., & Vallyathan, V. (2006). Nanoparticles: Health effects - Pros and cons. Environmental Health Perspectives, 114(12), 1818–1825. https://doi.org/10.1289/ehp.8871

    Article  Google Scholar 

  10. Pitaksuteepong, T. (2016). Nanotechnology: Effective topical delivery systems. Asian Journal of Pharmaceutical Sciences, 11(1), 16–17. https://doi.org/10.1016/j.ajps.2015.10.012

    Article  Google Scholar 

  11. Kim, S., Choi, J. E., Choi, J., Chung, K. H., Park, K., Yi, J., & Ryu, D. Y. (2009). Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicology in Vitro, 23(6), 1076–1084. https://doi.org/10.1016/j.tiv.2009.06.001

    Article  Google Scholar 

  12. Rajawar, S., Kurchania, R., Rajakumar, K., Pitale, S., Saha, S., & Qureshi, M. S. (2016). Study of anti-cancer properties of green silver nanoparticles against MCF-7 breast cancer cell lines. Green Processing and Synthesis, 4(5), 399–410. https://doi.org/10.1515/gps-2015-0104

    Article  Google Scholar 

  13. Haghparasti, Z., & Mahdavi Shahri, M. (2018). Green synthesis of water-soluble nontoxic inorganic polymer nanocomposites containing silver nanoparticles using white tea extract and assessment of their in vitro antioxidant and cytotoxicity activities. Materials Science and Engineering C, 87(2017), 139–148. https://doi.org/10.1016/j.msec.2018.02.026

    Article  Google Scholar 

  14. Elbossaty, W. F. (2017). Green tea as biological system for the synthesis of silver nanoparticles. Journal of Biotechnology & Biomaterials, 07(03), 3–7. https://doi.org/10.4172/2155-952X.1000269

    Article  Google Scholar 

  15. Sanna, V., Lubinu, G., Madau, P., Pala, N., Nurra, S., Mariani, A., & Sechi, M. (2015). Polymeric nanoparticles encapsulating white tea extract for nutraceutical application. Journal of Agricultural and Food Chemistry, 63(7), 2026–2032. https://doi.org/10.1021/jf505850q

    Article  Google Scholar 

  16. Cisterna, B. A., Kamaly, N., Choi, W. I., Tavakkoli, A., Farokhzad, O. C., & Vilos, C. (2016). Targeted nanoparticles for colorectal cancer. Nanomedicine, 11(18), 2443–2456. https://doi.org/10.2217/nnm-2016-0194

    Article  Google Scholar 

  17. Chintala, L., Vaka, S., Baranda, J., & Williamson, S. K. (2011). Capecitabine versus 5-fluorouracil in colorectal cancer: Where are we now? Oncology Reviews, 5(2), 129–140. https://doi.org/10.1007/s12156-011-0074-3

    Article  Google Scholar 

  18. Gelen, V., Şengül, E., Yıldırım, S., & Atila, G. (2018). The protective effects of naringin against 5-fluorouracil-induced hepatotoxicity and nephrotoxicity in rats. Iranian Journal of Basic Medical Sciences, 21(4), 404–410. https://doi.org/10.22038/ijbms.2018.27510.6714

    Article  Google Scholar 

  19. He, J., Pei, L., Jiang, H., Yang, W., Chen, J., & Liang, H. (2017). Chemoresistance of colorectal cancer to 5-fluorouracil is associated with silencing of the BNIP3 gene through aberrant methylation. Journal of Cancer, 8(7), 1187–1196. https://doi.org/10.7150/jca.18171

    Article  Google Scholar 

  20. Srimuangwong, K. (2012). Effects of hexahydrocurcumin in combination with 5-fluorouracil on dimethylhydrazine-induced colon cancer in rats. World Journal of Gastroenterology, 18(47), 6951. https://doi.org/10.3748/wjg.v18.i47.6951

    Article  Google Scholar 

  21. Handali, S., Moghimipour, E., Rezaei, M., Ramezani, Z., & Dorkoosh, F. A. (2020). PHBV/PLGA nanoparticles for enhanced delivery of 5-fluorouracil as promising treatment of colon cancer. Pharmaceutical development and technology, 25(2), 206–218. https://doi.org/10.1080/10837450.2019.1684945

    Article  Google Scholar 

  22. Smith, T., Affram, K., Bulumko, E., & Agyare, E. (2018). Evaluation of in-vitro cytotoxic effect of 5-FU loaded-chitosan nanoparticles against spheroid models. Journal of nature and science, 4(10). Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/30740523

  23. Loo, Y. Y., Chieng, B. W., Nishibuchi, M., & Radu, S. (2012). Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis. International Journal of Nanomedicine, 7, 4263–4267. https://doi.org/10.2147/IJN.S33344

    Article  Google Scholar 

  24. Lim, Y., Rajabalaya, R., Lee, S., Tennakoon, K., Le, Q.-V., Idris, A., … David, S. (2016). Parasitic mistletoes of the genera Scurrula and Viscum: From bench to bedside. Molecules, 21(8), 1048. https://doi.org/10.3390/molecules21081048

  25. Zulkipli, I., Rajabalaya, R., David, S., & Idris, A. (2015). Medicinal plants: A potential source of compounds for targeting cell division. Drug Target Insights, 9, 9–19. https://doi.org/10.4137/DTI.S24946

    Article  Google Scholar 

  26. Happy, A., Soumya, M., Venkat Kumar, S., Rajeshkumar, S., Sheba, R. D., Lakshmi, T., & Deepak Nallaswamy, V. (2019). Phyto-assisted synthesis of zinc oxide nanoparticles using Cassia alata and its antibacterial activity against Escherichia coli. Biochemistry and Biophysics Reports, 17, 208–211. https://doi.org/10.1016/j.bbrep.2019.01.002

    Article  Google Scholar 

  27. Zulkipli, I. N., Rajabalaya, R., Idris, A., Sulaiman, N. A., & David, S. R. (2017). Clinacanthus nutans : A review on ethnomedicinal uses, chemical constituents and pharmacological properties. Pharmaceutical Biology, 55(1), 1093–1113. https://doi.org/10.1080/13880209.2017.1288749

    Article  Google Scholar 

  28. David, S. R., Refai, S. A., Yian, K. R., Mai, C. W., Das, S. K., & Rajabalaya, R. (2019). Development and evaluation of liquid crystal systems of combination of 5-fluorouracil and curcumin for cervical cancer cell line. Journal of Pharmacy and Pharmacognosy Research, 7(6), 441–453.

    Google Scholar 

  29. Jucá, M. J., Bandeira, B. C., Carvalho, D. S., & Leal, A. T. (2014). Estudo comparativo das substâncias 1,2-dimetil-hidrazina e azoximetano na indução de câncer colorretal em ratos. Journal of Coloproctology, 34(3), 167–173. https://doi.org/10.1016/j.jcol.2014.06.003

    Article  Google Scholar 

  30. Doi, K., Fujioka, M., Sokuza, Y., Ohnishi, M., Gi, M., Takeshita, M., … Wanibuchi, H. (2017). Chemopreventive action by ethanol-extracted Brazilian green propolis on post-initiation phase of inflammation-associated rat colon tumorigenesis. In Vivo, 31(2), 187–197. https://doi.org/10.21873/invivo.11044

  31. Chari, K. Y., Polu, P. R., & Shenoy, R. R. (2018). An appraisal of pumpkin seed extract in 1, 2-dimethylhydrazine induced colon cancer in Wistar rats. Journal of Toxicology, 1–12. https://doi.org/10.1155/2018/6086490

  32. Bird, R. P. (1995). Role of aberrant crypt foci in understanding the pathogenesis of colon cancer. Cancer Letters, 93, 55–71.

    Article  Google Scholar 

  33. David, S. R., Abd Malek, N., Mahadi, A. H., Chakravarthi, S., & Rajabalaya, R. (2018). Development of controlled release silicone adhesive–based mupirocin patch demonstrates antibacterial activity on live rat skin against Staphylococcus aureus. Drug Design, Development and Therapy, 12, 481–494. https://doi.org/10.2147/DDDT.S146549

    Article  Google Scholar 

  34. Nair, A. B., & Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. Journal of basic and clinical pharmacy, 7(2), 27–31. https://doi.org/10.4103/0976-0105.177703

    Article  Google Scholar 

  35. Qiao, J., Gu, C., Shang, W., Du, J., Yin, W., Zhu, M., … Lu, W. (2011). Effect of green tea on pharmacokinetics of 5-fluorouracil in rats and pharmacodynamics in human cell lines in vitro. Food and Chemical Toxicology, 49(6), 1410–1415. https://doi.org/10.1016/j.fct.2011.03.033

  36. Higdon, J. V., & Frei, B. (2003). Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Critical Reviews in Food Science and Nutrition, 43(1), 89–143. https://doi.org/10.1080/10408690390826464

    Article  Google Scholar 

  37. De Robertis, M., Massi, E., Poeta, M. L., Carotti, S., Cecchetelli, L., Signori, E., & Fazio, V. M. (2011). The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies. Journal of Carcinogenesis, 12(22), 1–20. https://doi.org/10.4103/1477

    Article  Google Scholar 

  38. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70. https://doi.org/10.1007/BF03091804

    Article  Google Scholar 

  39. Sadik, N. A. H. (2013). Chemopreventive efficacy of green tea drinking against 1,2-dimethyl hydrazine-induced rat colon carcinogenesis. Cell Biochemistry and Function, 31(3), 196–207. https://doi.org/10.1002/cbf.2873

    Article  Google Scholar 

  40. Hayakawa, S., Saito, K., Miyoshi, N., Ohishi, T., Oishi, Y., Miyoshi, M., & Nakamura, Y. (2016). Anti-cancer effects of green tea by either anti- or pro-oxidative mechanisms. Asian Pacific Journal of Cancer Prevention, 17(4), 1649–1654. https://doi.org/10.7314/APJCP.2016.17.4.1649

    Article  Google Scholar 

  41. Perše, M., & Cerar, A. (2011). Morphological and molecular alterations in 1,2 dimethylhydrazine and azoxymethane induced colon carcinogenesis in rats. Journal of Biomedicine and Biotechnology, 2011(May). https://doi.org/10.1155/2011/473964

  42. Femia, A., & Caderni, G. (2008). Rodent models of colon carcinogenesis for the study of chemopreventive activity of natural products. Planta Medica, 74(13), 1602–1607. https://doi.org/10.1055/s-2008-1074577

    Article  Google Scholar 

  43. Idris, A., Zulkipli, I. N., Zulhilmi, N. R., Lee, H. F., Rajabalaya, R., Lim, Y. C., … David, S. R. (2017). Melastoma malabathricum ethyl acetate fraction induces secondary necrosis in human breast and lung cancer cell lines. Pharmacognosy Magazine, 13, S688-92. https://doi.org/10.4103/pm.pm

  44. Sipos, F., & Muzes, G. (2011). Isolated lymphoid follicles in colon: Switch points between inflammation and colorectal cancer? World Journal of Gastroenterology, 17(13), 1666–1673. https://doi.org/10.3748/wjg.v17.i13.1666

    Article  Google Scholar 

  45. Musa, M. N., David, S. R., Zulkipli, I. N., Mahadi, A. H., Chakravarthi, S., & Rajabalaya, R. (2017). Development and evaluation of exemestane-loaded lyotropic liquid crystalline gel formulations. Inland Waters, 7(4). https://doi.org/10.15171/bi.2017.27

  46. Sadighparvar, S., Darband, S. G., Yousefi, B., Kaviani, M., Ghaderi-Pakdel, F., Mihanfar, A., … Majidinia, M. (2020). Combination of quercetin and exercise training attenuates depression in rats with 1,2-dimethylhydrazine-induced colorectal cancer: Possible involvement of inflammation and BDNF signalling. Experimental physiology, 105(9), 1598–1609. https://doi.org/10.1113/EP088605

  47. Okda, T. M., Abd-Elghaffar, S. K., Katary, M. A., & Abd-Alhaseeb, M. M. (2021). Chemopreventive and anticancer activities of indomethacin and vitamin D combination on colorectal cancer induced by 1,2-dimethylhydrazine in rats. Biomedical reports, 14(2), 27. https://doi.org/10.3892/br.2020.1403

    Article  Google Scholar 

  48. Wang, Y., **, H.-Y., Fang, M.-Z., Wang, X.-F., Chen, H., Huang, S.-L., … Wang, S.-M. (2020). Epigallocatechin gallate inhibits dimethylhydrazine-induced colorectal cancer in rats. World journal of gastroenterology, 26(17), 2064–2081. https://doi.org/10.3748/wjg.v26.i17.2064

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Dr Sheba designed the experiments and organized the execution of the studies. Dr Rajan designed the experiments for the preparation of the extracts and the nanoparticle preparation. Ms. Khairunnasibah performed the experiments. The rest of the authors contributed equally to the studies.

Corresponding author

Correspondence to Rajan Rajabalaya.

Ethics declarations

Ethics Approval

The research ethics for using animals were reviewed and approved by the University Research Ethics Committee (UREC), Universiti Brunei Darussalam (Ref: UBD/OAVCR/UREC/Dec18-02). Either gender of 2–3-month-old Wistar rats, which initially weighed 230–280 g, was procured from the animal house of the Institute of Health Science, Universiti Brunei Darussalam. Food and water were provided ad libitum and housed under standard conditions (27 ± 2 °C; 70–80% humidity; and 12 h light/12 h darkness cycle) with a minimum of 5 days for acclimatization to housing condition, prior to the intervention.

Conflict of Interest

The authors declare no competing interests.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2.11 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

David, S.R., Abdullah, K., Shanmugam, R. et al. Green Synthesis, Characterization and In Vivo Evaluation of White Tea Silver Nanoparticles with 5-Fluorouracil on Colorectal Cancer. BioNanoSci. 11, 1095–1107 (2021). https://doi.org/10.1007/s12668-021-00905-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00905-7

Keywords

Navigation