Log in

Recent developments in PV/wind hybrid renewable energy systems: a review

  • Review Article
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Electrical energy plays a vital role in every individual, and also it is crucial for the economy of any country. Looking into the sustainability and environment factors, it is evident that the renewable energy sources are certainly the way forward for the future electricity needs. But, due to the dependency on climatic conditions, these sources are not entirely reliable when utilized individually. A Hybrid Renewable Energy System (HRES) is a combination of two or more resources that will improve reliability and reduce the cost of the system. Hence, sizing of HRES for a particular area becomes an important research topic in this field. In this paper, a detailed and up-to-date review of research that has been carried out in the area of HRES primarily focusing on solar PV and wind energy systems in terms of technical, economic, and environmental aspects, is presented. At first, various configurations of HRES in both stand-alone and grid-connected mode were discussed. An effort has been made to highlight the different storage systems along with their benefits and drawbacks in this paper. Further various optimization methods used by the researchers were also summarized in the text and tabular forms. More importantly, this paper also includes a review of demand response methodologies that are used by the researchers when sizing the system and methodologies that involve the Electric Vehicles (EVs) as an additional battery storage/controllable load. The mathematical modelling of PEVs, various constraints used for optimization were also described in this paper with relevant explanation. Hence, this paper gives an overall perspective about various sizing methods of the HRES including DRM and EVs to the reader. Finally, the overall observations and few recommendations were presented in this paper, which will be helpful for the researchers, policy makers working in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

\(\eta _{i,t}\) :

EV battery efficiency

\(\eta _{REVB}\) :

Efficiency of retired electric vehicles battery

\(C_m(t)\) :

Maximum remaining capacity of retired electric vehicle batteries

\(C_{loss}\) :

The capacity loss of Li-ion battery

\(E_{t,s}^{arr}\) :

Calculated EV energy at arrival time

\(E_{t,s}^{dep}\) :

Calculated EV energy at departure time

\(I_{m}(t)\) :

Module current of retired electric vehicle battery

\(P^{EV}\) :

EV Charging power or discharging power

\(SOC^{PEV}\) :

Plug in electrical vehicle state of charge

\(T_{arriv}^{PEV}\) :

Plug in electric vehicle arrival time

\(T_{dep}^{PEV}\) :

Plug in electric vehicle departure time

\(V_{m}(t)\) :

Module voltage of retired electric vehicle battery

ABC:

Artificial Bee-Colony

AT:

Arrival Time

BESS:

Battery energy storage systems

CHEED:

Combined heat emission and economic dispatch

CS:

Cuckoo-Search

DD:

Distance driven

DG:

Diesel generator

DRM:

Demand Response Methods

DRP:

Demand response program

DT:

Departure Time

ECES:

Electro-chemical energy storage

EES:

Electrical energy storage

EMS:

Energy management systems

ESS:

Energy storage systems

EV:

Electric vehicles

EVs:

Electric vehicles

FC:

Fuel cell

FPA:

Flower pollination algorithm

G2V:

Grid to vehicle

GA:

Genetic Algorithm

GAMS:

General Algebraic Modelling System

GC:

Grid-Connected

GWO:

Grey Wolf Optimizer

HBB-BC:

Hybrid Big Bang and Big Crunch

HESS:

Hybrid Energy Storage Systems

HOMER:

Hybrid Optimization Model for Electric Renewables

HRES:

Hybrid renewable energy systems

HS:

Harmony Search

IEA:

International Energy Agency

IRENA:

International renewable energy agency

LCE:

Levilized cost of energy

LCOE:

Levelized Cost of Energy

LPSP:

Loss of Power Supply Probability

LPSP:

Loss of power supply probability

MCSA:

Modified Crow Search Algorithm

MES:

Mechanical Energy Storage

MOEA:

Multi-Objective Evolutionary Algorithm

MOEA/D:

Multi-Objective Evolutionary Algorithm based Decomposition

MOGA:

Multi-Objective Genetic Algorithm

MSFLA:

Modified Shuffled Frog Lea** Algorithm

NPC:

Net present cost

NSGA-II:

Non-dominated Sorted Genetic Algorithm-II

PEVs:

Plug-in Electric Vehicles

PSHP:

Pumped storage hydro-power plant

PSO:

Particle Swarm Optimization

PV:

Photovoltaic

REVB:

Retired electric vehicle batteries

RHO:

Receding Horizon Optimization

SA:

Stand-alone

SC:

Super-capacitor

SCES:

Super-conducting energy storage

SOC:

State of charge

SSR:

Search space reduction algorithm

TC:

Total cost

TLBO:

Teaching Learning based optimization

UC:

Ultra-capacitor

V2G:

Vehicle to grid

WDO:

Wind Driven Optimization

References

  1. IEA: “India energy outlook 2021,” IEA, Paris, (2021). [Online]. Available: https://www.iea.org/reports/india-energy-outlook-2021. Accessed 9 Feb 2022

  2. Wang, X., Palazoglu, A., El-Farra, N.H.: Operational optimization and demand response of hybrid renewable energy systems. Appl. Energy 143, 324–335 (2015). https://doi.org/10.1016/j.apenergy.2015.01.004

    Article  Google Scholar 

  3. IRENA: “Renewable-energy-statistics-2022,” IRENA, (2022). [Online]. Available: https://www.irena.org/Publications/2022/Jul/Renewable-Energy-Statistics-2022. Accessed 18 Jul 2022

  4. Khalid, M., AlMuhaini, M., Aguilera, R.P., Savkin, A.V.: Method for planning a wind-solar-battery hybrid power plant with optimal generation demand matching. IET Renew. Power Gener. 12(15), 1800–1806 (2018)

    Article  Google Scholar 

  5. Khiareddine, A., Ben Salah, C., Rekioua, D., Mimouni, M.F.: Sizing methodology for hybrid photovoltaic /wind/ hydrogen/battery integrated to energy management strategy for pum** system. Energy 153, 743–762 (2018). https://doi.org/10.1016/j.energy.2018.04.073

    Article  Google Scholar 

  6. Al-falahi, M.D., Jayasinghe, S.D., Enshaei, H.: A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system. Energy Convers. Manag. 143, 252–274 (2017). https://doi.org/10.1016/j.enconman.2017.04.019

    Article  Google Scholar 

  7. Khan, F.A., Pal, N., Saeed, S.H.: Review of solar photovoltaic and wind hybrid energy systems for sizing strategies optimization techniques and cost analysis methodologies. Renew. Sustain. Energy Rev. 92(April), 937–947 (2018). https://doi.org/10.1016/j.rser.2018.04.107

    Article  Google Scholar 

  8. Mahesh, A., Sandhu, K.S.: Hybrid wind/photovoltaic energy system developments: Critical review and findings. Renew. Sustain. Energy Rev. 52, 1135–1147 (2015)

    Article  Google Scholar 

  9. Bukar, A.L., Tan, C.W.: A review on stand-alone photovoltaic-wind energy system with fuel cell: System optimization and energy management strategy. J. Clean. Prod. 221, 73–88 (2019). https://doi.org/10.1016/j.jclepro.2019.02.228

    Article  Google Scholar 

  10. Singh, S., Singh, M., Kaushik, S.C.: A review on optimization techniques for sizing of solar-wind hybrid energy systems. Int. J. Green Energy 13(15), 1564–1578 (2016). https://doi.org/10.1080/15435075.2016.1207079

    Article  Google Scholar 

  11. Anoune, K., Bouya, M., Astito, A., Abdellah, A.B.: Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review. Renew. Sustain. Energy Rev. 93(April), 652–673 (2018). https://doi.org/10.1016/j.rser.2018.05.032

    Article  Google Scholar 

  12. Eriksson, E.L., Gray, E.M.A.: Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems-A critical review. Appl. Energy 202, 348–364 (2017). https://doi.org/10.1016/j.apenergy.2017.03.132

    Article  Google Scholar 

  13. Singh, R., Bansal, R.C.: Optimization of an Autonomous Hybrid. IEEE Trans. Ind. Inf. 15(1), 399–409 (2019)

    Article  Google Scholar 

  14. Sediqi, Mohammad Masih, Furukakoi, Masahiro, Lotfy, Mohammed E., Yona, Atsushi, Senjyu, Tomonobu: Optimal economical sizing of grid-connected hybrid renewable energy system. J. Energy Power Eng. 11(4), 244–253 (2017)

    Google Scholar 

  15. Belfedhal, S.A., Berkouk, E.M., Messlem, Y.: Analysis of grid connected hybrid renewable energy system. J. Renew. Sustain. Energy 11(1), 014702-1–014702-12 (2019)

  16. Lingamuthu, R.R., Mariappan, R.: Power flow control of grid connected hybrid renewable energy system using hybrid controller with pumped storage. Int. J. Hydrogen Energy 44(7), 3790–3802 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.092

    Article  Google Scholar 

  17. Saad, N.H., El-Sattar, A.A., Mansour, A.E.A.M.: A novel control strategy for grid connected hybrid renewable energy systems using improved particle swarm optimization. Ain Shams Eng. J. 9(4), 2195–2214 (2018). https://doi.org/10.1016/j.asej.2017.03.009

    Article  Google Scholar 

  18. Masaki, M.S., Zhang, L., **a, X.: A hierarchical predictive control for supercapacitor-retrofitted grid-connected hybrid renewable systems. Appl. Energy 242(February), 393–402 (2019). https://doi.org/10.1016/j.apenergy.2019.03.049

    Article  Google Scholar 

  19. Maleki, A., Rosen, M.A., Pourfayaz, F.: Optimal operation of a grid-connected hybrid renewable energy system for residential applications. Sustainability (Switzerland) 9(8), 1–20 (2017)

  20. Bhimaraju, A., Mahesh, A., Nirbheram, J.S.: Feasibility study of solar photovoltaic/grid-connected hybrid renewable energy system with pumped storage hydropower system using abandoned open cast coal mine: A case study in India. J. Energy Storage, 72, 108206, (2023). https://www.sciencedirect.com/science/article/pii/S2352152X23016031. Accessed 15 Nov 2023

  21. Ogunjuyigbe, A.S.O., Ayodele, T.R., Akinola, O.A.: Optimal allocation and sizing of PV / Wind / Split-diesel / Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building. Appl. Energy 171, 153–171 (2016). https://doi.org/10.1016/j.apenergy.2016.03.051

    Article  Google Scholar 

  22. Dawoud, S.M., Lin, X., Okba, M.I.: Hybrid renewable microgrid optimization techniques: a review. Renew. Sustain. Energy Rev. 82(September 2017), 2039–2052 (2018). https://doi.org/10.1016/j.rser.2017.08.007

    Article  Google Scholar 

  23. Hosseinalizadeh, R., Shakouri, G.H., Amalnick, M.S., Taghipour, P.: Economic sizing of a hybrid (PV-WT-FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: Case study of Iran. Renew. Sustain. Energy Rev. 54, 139–150 (2016). https://doi.org/10.1016/j.rser.2015.09.046

    Article  Google Scholar 

  24. Tummuru, N.R., Mishra, M.K., Srinivas, S.: Dynamic energy management of renewable grid integrated hybrid energy storage system. IEEE Trans. Ind. Electron. 62(12), 7728–7737 (2015)

    Article  Google Scholar 

  25. Spataru, C., Kok, Y.C., Barrett, M.: Physical energy storage employed worldwide. Energy Proc. 62, 452–461 (2014). https://doi.org/10.1016/j.egypro.2014.12.407

    Article  Google Scholar 

  26. Ma, T., Yang, H., Lu, L.: Development of hybrid battery-supercapacitor energy storage for remote area renewable energy systems. Appl. Energy 153, 56–62 (2015). https://doi.org/10.1016/j.apenergy.2014.12.008

    Article  Google Scholar 

  27. Li, J., Yang, Q., Robinson, F., Liang, F., Zhang, M., Yuan, W.: Design and test of a new droop control algorithm for a SMES/battery hybrid energy storage system. Energy 118, 1110–1122 (2017). https://doi.org/10.1016/j.energy.2016.10.130

    Article  Google Scholar 

  28. Hou, J., Song, Z., Hofmann, H., Sun, J.: Adaptive model predictive control for hybrid energy storage energy management in all-electric ship microgrids. Energy Convers. Manag. 198(May), 111929 (2019). https://doi.org/10.1016/j.enconman.2019.111929

    Article  Google Scholar 

  29. Fang, J., Tang, Y., Li, H., Li, X.: A Battery/Ultracapacitor Hybrid Energy Storage System for Implementing the Power Management of Virtual Synchronous Generators. IEEE Trans. Power Electron. 33(4), 2820–2824 (2018)

    Article  Google Scholar 

  30. Wang, G., Ciobotaru, M., Agelidis, V.G.: Power smoothing of large solar PV plant using hybrid energy storage. IEEE Trans. Sustain. Energy 5(3), 834–842 (2014)

    Article  Google Scholar 

  31. Shen, J., Khaligh, A.: In a battery/ultracapacitor hybrid energy storage system. Ieee Trans. Transport. Electrif. 1(3), 223–231 (2015)

    Article  Google Scholar 

  32. Energy, S.-B.: Validation of faster joint control strategy for. IEEE Trans. Industr. Electron. 65(4), 3286–3295 (2018)

    Article  Google Scholar 

  33. Li, J., **ong, R., Mu, H., Cornélusse, B., Vanderbemden, P., Ernst, D., Yuan, W.: Design and real-time test of a hybrid energy storage system in the microgrid with the benefit of improving the battery lifetime. Appl. Energy 218(March), 470–478 (2018). https://doi.org/10.1016/j.apenergy.2018.01.096

    Article  Google Scholar 

  34. Song, Q., Chen, J.: A decentralized energy management strategy for a battery/supercapacitor hybrid energy storage system in autonomous DC microgrid. In: IEEE International Symposium on Industrial Electronics 2018-June(7), 19–24 (2018)

  35. **ao, J., Wang, P., Setyawan, L.: Hierarchical control of hybrid energy storage system in DC microgrids. IEEE Trans. Industr. Electron. 62(8), 4915–4924 (2015)

    Article  Google Scholar 

  36. Geem, Z.W., Yoon, Y.: Harmony search optimization of renewable energy charging with energy storage system. Int. J. Electr. Power Energy Syst. 86, 120–126 (2017). https://doi.org/10.1016/j.ijepes.2016.04.028

    Article  Google Scholar 

  37. Atwa, Y.M., Member, S., Member, S.: Optimal allocation of ESS in distribution systems with a high penetration of wind energy. 25(4), 1815–1822 (2010)

  38. Grantham, A., Pudney, P., Ward, L.A., Whaley, D., Boland, J.: The viability of electrical energy storage for low-energy households. Sol. Energy 155, 1216–1224 (2017). https://doi.org/10.1016/j.solener.2017.07.063

    Article  Google Scholar 

  39. Godina, R., Bizuayehu, A.W., Lujano-rojas, J.M.: Modelling and sizing of NaS ( sodium sulfur ) battery energy storage system for extending wind power performance in Crete Island. 90, 1606–1617, (2015)

  40. Suazo-martínez, C., Pereira-bonvallet, E., Palma-behnke, R.: A simulation framework for optimal energy storage sizing. pp. 3033–3055 (2014)

  41. Yuan, Y., Sun, C., Li, M., Shing, S., Li, Q.: Determination of optimal supercapacitor-lead-acid battery energy storage capacity for smoothing wind power using empirical mode decomposition and neural network. Electric Power Syst. Res. 127, 323–331 (2015). https://doi.org/10.1016/j.epsr.2015.06.015

    Article  Google Scholar 

  42. Nguyen, T.A., Crow, M.L., Elmore, A.C.: Optimal sizing of a vanadium redox battery system for microgrid systems. 6(3), 729–737 (2015)

  43. Berrada, A., Loudiyi, K.: Operation, sizing, and economic evaluation of storage for solar and wind power plants. Renew. Sustain. Energy Rev. 59, 1117–1129 (2016). https://doi.org/10.1016/j.rser.2016.01.048

    Article  Google Scholar 

  44. Saboori, H., Hemmati, R., Jirdehi, M.A.: Reliability improvement in radial electrical distribution network by optimal planning of energy storage systems. Energy 93, 2299–2312 (2015). https://doi.org/10.1016/j.energy.2015.10.125

    Article  Google Scholar 

  45. Shang, C., Srinivasan, D., Reindl, T.: Electrical Power and Energy Systems An improved particle swarm optimisation algorithm applied to battery sizing for stand-alone hybrid power systems. Int. J. Electr. Power Energy Syst. 74, 104–117 (2016). https://doi.org/10.1016/j.ijepes.2015.07.009

    Article  Google Scholar 

  46. Fossati, J.P., Galarza, A., Martín-villate, A., Font, L.: A method for optimal sizing energy storage systems for microgrids n. Renewable Energy 77, 539–549 (2015)

  47. Zhou, T., Sun, W.: Optimization of battery-supercapacitor hybrid energy storage station in Wind/solar generation system. IEEE Trans. Sustain. Energy 5(2), 408–415 (2014)

    Article  MathSciNet  Google Scholar 

  48. Kerdphol, T., Fuji, K., Mitani, Y., Watanabe, M., Qudaih, Y.: Optimization of a battery energy storage system using particle swarm optimization for stand-alone microgrids. Int. J. Electr. Power Energy Syst. 81, 32–39 (2016). https://doi.org/10.1016/j.ijepes.2016.02.006

    Article  Google Scholar 

  49. Xu, F., Liu, J., Lin, S., Dai, Q., Li, C.: A multi-objective optimization model of hybrid energy storage system for non-grid-connected wind power: A case study in China. Energy 163, 585–603 (2018)

    Article  Google Scholar 

  50. Amrollahi, M.H., Bathaee, S.M.T.: Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response. Appl. Energy 202, 66–77 (2017). https://doi.org/10.1016/j.apenergy.2017.05.116

    Article  Google Scholar 

  51. Jacob, A.S., Banerjee, R., Ghosh, P.C.: Sizing of hybrid energy storage system for a PV based microgrid through design space approach. Appl. Energy 212(September 2017), 640–653 (2018). https://doi.org/10.1016/j.apenergy.2017.12.040

    Article  Google Scholar 

  52. Guezgouz, M., Jurasz, J., Bekkouche, B., Ma, T., Javed, M.S., Kies, A.: Optimal hybrid pumped hydro-battery storage scheme for off-grid renewable energy systems. Energy Convers. Manag. 199(May), 112046 (2019). https://doi.org/10.1016/j.enconman.2019.112046

    Article  Google Scholar 

  53. García-Triviño, P., Fernández-Ramírez, L.M., Gil-Mena, A.J., Llorens-Iborra, F., García-Vázquez, C.A., Jurado, F.: Optimized operation combining costs, efficiency and lifetime of a hybrid renewable energy system with energy storage by battery and hydrogen in grid-connected applications. Int. J. Hydrogen Energy 41(48), 23 132-23 144 (2016)

    Article  Google Scholar 

  54. Elgammal, A., El-Naggar, M.: Energy management in smart grids for the integration of hybrid wind-PV-FC-battery renewable energy resources using multi-objective particle swarm optimisation (MOPSO). J. Eng. 2018(11), 1806–1816 (2018)

    Google Scholar 

  55. Rauf, A., Salam, Z.: A rule-based energy management scheme for uninterrupted electric vehicles charging at constant price using photovoltaic-grid system. Renew. Energy 125, 384–400 (2018). https://doi.org/10.1016/j.renene.2018.02.126

    Article  Google Scholar 

  56. García, P., Torreglosa, J.P., Fernández, L.M., Jurado, F., Langella, R., Testa, A.: Energy management system based on techno-economic optimization for microgrids. Electric Power Syst. Res. 131, 49–59 (2016). https://doi.org/10.1016/j.epsr.2015.09.017

    Article  Google Scholar 

  57. Bukar, A.L., Tan, C.W., Lau, K.Y.: Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm. Sol. Energy 188(March), 685–696 (2019). https://doi.org/10.1016/j.solener.2019.06.050

    Article  Google Scholar 

  58. Cano, M.H., Kelouwani, S., Agbossou, K., Dubé, Y.: Power management system for off-grid hydrogen production based on uncertainty. Int. J. Hydrogen Energy 40(23), 7260–7272 (2015)

    Article  Google Scholar 

  59. Han, S., Na Zhang, L., Gian Liu, Y., Zhang, H., Yan, J., Li, L., Hui Lei, X., Wang, X.: Quantitative evaluation method for the complementarity of wind-solar-hydro power and optimization of wind-solar ratio. Appl. Energy 236(August 2018), 973–984 (2019)

    Article  Google Scholar 

  60. Long, H., Eghlimi, M., Zhang, Z.: Configuration optimization and analysis of a large scale PV/wind system. IEEE Trans. Sustain. Energy 8(1), 84–93 (2017)

    Article  Google Scholar 

  61. Akram, U., Khalid, M., Shafiq, S.: Optimal sizing of a wind/solar/battery hybrid grid-connected microgrid system. IET Renew. Power Gener. 12(1), 72–80 (2018)

    Article  Google Scholar 

  62. Liu, Z., Zhang, Z., Zhuo, R., Wang, X.: Optimal operation of independent regional power grid with multiple wind-solar-hydro-battery power. Appl. Energy 235(June 2018), 1541–1550 (2019). https://doi.org/10.1016/j.apenergy.2018.11.072

    Article  Google Scholar 

  63. Ghiasi, M.: Detailed study, multi-objective optimization, and design of an AC-DC smart microgrid with hybrid renewable energy resources. Energy 169, 496–507 (2019). https://doi.org/10.1016/j.energy.2018.12.083

    Article  Google Scholar 

  64. Sachs, J., Sawodny, O.: Multi-objective three stage design optimization for island microgrids. Appl. Energy 165, 789–800 (2016). https://doi.org/10.1016/j.apenergy.2015.12.059

    Article  Google Scholar 

  65. Javed, M.S., Song, A., Ma, T.: Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm. Energy 176, 704–717 (2019). https://doi.org/10.1016/j.energy.2019.03.131

    Article  Google Scholar 

  66. Abdelkader, A., Rabeh, A., Mohamed Ali, D., Mohamed, J.: Multi-objective genetic algorithm based sizing optimization of a stand-alone wind/PV power supply system with enhanced battery/supercapacitor hybrid energy storage. Energy 163, 351–363 (2018). https://doi.org/10.1016/j.energy.2018.08.135

    Article  Google Scholar 

  67. Maleki, A., Hafeznia, H., Rosen, M.A., Pourfayaz, F.: Optimization of a grid-connected hybrid solar-wind-hydrogen CHP system for residential applications by efficient metaheuristic approaches. Appl. Therm. Eng. 123, 1263–1277 (2017). https://doi.org/10.1016/j.applthermaleng.2017.05.100

    Article  Google Scholar 

  68. Kamjoo, A., Maheri, A., Dizqah, A.M., Putrus, G.A.: Multi-objective design under uncertainties of hybrid renewable energy system using NSGA-II and chance constrained programming. Int. J. Electr. Power Energy Syst. 74, 187–194 (2016). https://doi.org/10.1016/j.ijepes.2015.07.007

    Article  Google Scholar 

  69. Li, F.F., Qiu, J.: Multi-objective optimization for integrated hydro-photovoltaic power system. Appl. Energy 167, 377–384 (2016). https://doi.org/10.1016/j.apenergy.2015.09.018

    Article  Google Scholar 

  70. Fetanat, A., Khorasaninejad, E.: Size optimization for hybrid photovoltaic-wind energy system using ant colony optimization for continuous domains based integer programming. Appl. Soft Comput. J. 31, 196–209 (2015). https://doi.org/10.1016/j.asoc.2015.02.047

    Article  Google Scholar 

  71. Dufo-López, R., Cristóbal-Monreal, I.R., Yusta, J.M.: Optimisation of PV-wind-diesel-battery stand-alone systems to minimise cost and maximise human development index and job creation. Renew. Energy 94, 280–293 (2016)

    Article  Google Scholar 

  72. Ming, M., Wang, R., Zha, Y., Zhang, T.: Multi-objective optimization of hybrid renewable energy system using an enhanced multi-objective evolutionary algorithm. Energies 10(5), 5–9 (2017)

    Article  Google Scholar 

  73. Bhimaraju, A., Mahesh, A., Joshi, S.N.: Techno-economic optimization of grid-connected solar-wind-pumped storage hybrid energy system using improved search space reduction algorithm. J. Energy Storage 52, 104778 (2022)

    Article  Google Scholar 

  74. Mahesh, A., Sushnigdha, G.: A novel search space reduction optimization algorithm. Soft. Comput. 25(14), 9455–9482 (2021)

    Article  Google Scholar 

  75. Cho, J.H., Chun, M.G., Hong, W.P.: Structure optimization of stand-alone renewable power systems based on multi object function. Energies 9(8), 1–19 (2016)

    Article  Google Scholar 

  76. Bhimaraju, A., Ganesh, G.B., Mahesh, A.: Optimal sizing of pv/wind/battery stand-alone hybrid renewable energy systems using tlbo algorithm. In: Venkata Rao, R., Taler, J. (eds.) Advanced Engineering Optimization Through Intelligent Techniques, pp. 65–73. Springer Nature Singapore, Singapore (2023)

    Chapter  Google Scholar 

  77. Ghaffari, A., Askarzadeh, A.: Design optimization of a hybrid system subject to reliability level and renewable energy penetration. Energy 193, 1–12 (2020)

  78. Elattar, E.E.: Environmental economic dispatch with heat optimization in the presence of renewable energy based on modified shuffle frog lea** algorithm. Energy 171, 256–269 (2019). https://doi.org/10.1016/j.energy.2019.01.010

    Article  Google Scholar 

  79. Ghorbani, N., Kasaeian, A., Toopshekan, A., Bahrami, L., Maghami, A.: Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability. Energy 154, 581–591 (2018). https://doi.org/10.1016/j.energy.2017.12.057

    Article  Google Scholar 

  80. Kaabeche, A., Bakelli, Y.: Renewable hybrid system size optimization considering various electrochemical energy storage technologies. Energy Convers. Manag. 193(April), 162–175 (2019). https://doi.org/10.1016/j.enconman.2019.04.064

    Article  Google Scholar 

  81. Samy, M.M., Barakat, S., Ramadan, H.S.: A flower pollination optimization algorithm for an off-grid PV-Fuel cell hybrid renewable system. Int. J. Hydrogen Energy 2018, 2141–2152 (2019). https://doi.org/10.1016/j.ijhydene.2018.05.127

    Article  Google Scholar 

  82. Fathy, A.: A reliable methodology based on mine blast optimization algorithm for optimal sizing of hybrid PV-wind-FC system for remote area in Egypt. Renew. Energy 95, 367–380 (2016). https://doi.org/10.1016/j.renene.2016.04.030

    Article  Google Scholar 

  83. Guangqian, D., Bekhrad, K., Azarikhah, P., Maleki, A.: A hybrid algorithm based optimization on modeling of grid independent biodiesel-based hybrid solar/wind systems. Renew. Energy 122, 551–560 (2018). https://doi.org/10.1016/j.renene.2018.02.021

    Article  Google Scholar 

  84. Merei, G., Moshövel, J., Magnor, D., Sauer, D.U.: Optimization of self-consumption and techno-economic analysis of PV-battery systems in commercial applications. Appl. Energy 168, 171–178 (2016). https://doi.org/10.1016/j.apenergy.2016.01.083

    Article  Google Scholar 

  85. Mazzeo, D., Oliveti, G., Baglivo, C., Congedo, P.M.: Energy reliability-constrained method for the multi-objective optimization of a photovoltaic-wind hybrid system with battery storage. Energy 156, 688–708 (2018). https://doi.org/10.1016/j.energy.2018.04.062

    Article  Google Scholar 

  86. Schmidt, J., Cancella, R., Pereira, A.O.: An optimal mix of solar PV, wind and hydro power for a low-carbon electricity supply in Brazil. Renew. Energy 85(2016), 137–147 (2016). https://doi.org/10.1016/j.renene.2015.06.010

    Article  Google Scholar 

  87. Ramli, M.A., Bouchekara, H.R., Alghamdi, A.S.: Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm. Renew. Energy 121, 400–411 (2018)

    Article  Google Scholar 

  88. Tu, T., Rajarathnam, G.P., Vassallo, A.M.: Optimization of a stand-alone photovoltaic-wind-diesel-battery system with multi-layered demand scheduling. Renew. Energy 131, 333–347 (2019)

    Article  Google Scholar 

  89. Campana, P.E., Wästhage, L., Nookuea, W., Tan, Y., Yan, J.: Optimization and assessment of floating and floating-tracking PV systems integrated in on- and off-grid hybrid energy systems. Solar Energy 177(January 2018), 782–795 (2019). https://doi.org/10.1016/j.solener.2018.11.045

    Article  Google Scholar 

  90. Carvalho, D.B., Guardia, E.C., Marangon Lima, J.W.: Technical-economic analysis of the insertion of PV power into a wind-solar hybrid system. Sol. Energy 191(February), 530–539 (2019). https://doi.org/10.1016/j.solener.2019.06.070

    Article  Google Scholar 

  91. Abdalla, O., Rezk, H., Ahmed, E.M.: Wind driven optimization algorithm based global MPPT for PV system under non-uniform solar irradiance. Solar Energy 180(August 2018), 429–444 (2019). https://doi.org/10.1016/j.solener.2019.01.056

    Article  Google Scholar 

  92. Ahmadi, S., Abdi, S.: Application of the Hybrid Big Bang-Big Crunch algorithm for optimal sizing of a stand-alone hybrid PV/wind/battery system. Sol. Energy 134, 366–374 (2016). https://doi.org/10.1016/j.solener.2016.05.019

    Article  Google Scholar 

  93. Yahiaoui, A., Benmansour, K., Tad**e, M.: Control, analysis and optimization of hybrid PV-Diesel-Battery systems for isolated rural city in Algeria. Sol. Energy 137, 1–10 (2016). https://doi.org/10.1016/j.solener.2016.07.050

    Article  Google Scholar 

  94. Zebarjadi, M., Askarzadeh, A.: Optimization of a reliable grid-connected PV-based power plant with/without energy storage system by a heuristic approach. Sol. Energy 125, 12–21 (2016). https://doi.org/10.1016/j.solener.2015.11.045

    Article  Google Scholar 

  95. Nirbheram, J.S., Mahesh, A., Bhimaraju, A.: Techno-economic analysis of grid-connected hybrid renewable energy system adapting hybrid demand response program and novel energy management strategy. Renew. Energy 212, 1–16 (2023). https://www.sciencedirect.com/science/article/pii/S0960148123006316

  96. Tahir, M.F., Haoyong, C., Khan, A., Javed, M.S., Laraik, N.A., Mehmood, K.: Optimizing size of variable renewable energy sources by incorporating energy storage and demand response. IEEE Access 7, 103 115-103 126 (2019)

    Article  Google Scholar 

  97. Chamandoust, H., Derakhshan, G., Hakimi, S.M., Bahramara, S.: Tri-objective optimal scheduling of smart energy hub system with schedulable loads. J. Clean. Prod. 236, 117584 (2019). https://doi.org/10.1016/j.jclepro.2019.07.059

    Article  Google Scholar 

  98. Nojavan, S., Majidi, M., Najafi-Ghalelou, A., Ghahramani, M., Zare, K.: A cost-emission model for fuel cell/PV/battery hybrid energy system in the presence of demand response program: \(\epsilon\)-constraint method and fuzzy satisfying approach. Energy Convers. Manag. 138, 383–392 (2017). https://doi.org/10.1016/j.enconman.2017.02.003

    Article  Google Scholar 

  99. Ihsan, A., Jeppesen, M., Brear, M.J.: Impact of demand response on the optimal, techno-economic performance of a hybrid, renewable energy power plant. Appl. Energy 238(January), 972–984 (2019). https://doi.org/10.1016/j.apenergy.2019.01.090

    Article  Google Scholar 

  100. Nojavan, S., Majidi, M., Zare, K.: Risk-based optimal performance of a PV/fuel cell/battery/grid hybrid energy system using information gap decision theory in the presence of demand response program. Int. J. Hydrogen Energy 42(16), 11857–11867 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.147

    Article  Google Scholar 

  101. Eltamaly, A.M., Alotaibi, M.A., Alolah, A.I., Ahmed, M.A.: A novel demand response strategy for sizing of hybrid energy system with smart grid concepts. IEEE Access 9, 20 277-20 294 (2021)

    Article  Google Scholar 

  102. AL-Dhaifallah, M., Ali, Z.M., Alanazi, M., Dadfar, S., Fazaeli, M.H.: An efficient short-term energy management system for a microgrid with renewable power generation and electric vehicles. Neural Comput. Appl. 5, 10 (2021). https://doi.org/10.1007/s00521-021-06247-5

    Article  Google Scholar 

  103. Date, P.: UC Office of the President Resiliency Impacts of Plug-in Electric Vehicles in a Smart Grid. (2021)

  104. Saffar, A., Ghasemi, A.: Energy management of a renewable-based isolated micro-grid by optimal utilization of dump loads and plug-in electric vehicles. J. Energy Storage 39, 102643 (2021). https://doi.org/10.1016/j.est.2021.102643

    Article  Google Scholar 

  105. Zeng, X., Nazir, M.S., Khaksar, M., Nishihara, K., Tao, H.: A day-ahead economic scheduling of microgrids equipped with plug-in hybrid electric vehicles using modified shuffled frog lea** algorithm. J. Energy Storage 33(October 2020), 102021 (2021). https://doi.org/10.1016/j.est.2020.102021

    Article  Google Scholar 

  106. Jiao, F., Zou, Y., Zhang, X., Zou, R.: Multi-objective optimal energy management of microgrids including plug-in electric vehicles with the vehicle to grid capability for energy resources scheduling. Proc. Inst. Mech. Eng. Part A J. Power Energy 235(3), 563–580 (2020)

    Article  Google Scholar 

  107. Hariri, A.M., Hejazi, M.A., Hashemi-Dezaki, H.: Investigation of impacts of plug-in hybrid electric vehicles’ stochastic characteristics modeling on smart grid reliability under different charging scenarios. J. Clean. Prod. 287, 125500 (2021). https://doi.org/10.1016/j.jclepro.2020.125500

    Article  Google Scholar 

  108. Ahmadi-Nezamabad, H., Zand, M., Alizadeh, A., Vosoogh, M., Nojavan, S.: Multi-objective optimization based robust scheduling of electric vehicles aggregator. Sustain. Cities Soc. 47(February), 101494 (2019). https://doi.org/10.1016/j.scs.2019.101494

    Article  Google Scholar 

  109. Behera, S., Behera, S., Barisal, A.K.: Dynamic combined economic emission dispatch integrating plug-in electric vehicles and renewable energy sources. Int. J. Ambient Energy 15, 10 (2021). https://doi.org/10.1080/01430750.2021.1918243

    Article  Google Scholar 

  110. Wang, L., Nian, V., Li, H., Yuan, J.: Impacts of electric vehicle deployment on the electricity sector in a highly urbanised environment. J. Clean. Prod. 295, 126386 (2021). https://doi.org/10.1016/j.jclepro.2021.126386

    Article  Google Scholar 

  111. Ekren, O., Hakan Canbaz, C., Güvel, Ç.B.: Sizing of a solar-wind hybrid electric vehicle charging station by using HOMER software. J. Clean. Prod. 279, 123615 (2021). https://doi.org/10.1016/j.jclepro.2020.123615

    Article  Google Scholar 

  112. Bhatti, A.R., Butt, A.D., Sheikh, Y.A., Paracha, K.N., Zareen, N.: Comparative analysis of proposed photovoltaic-grid and grid-only systems for uninterrupted charging of plug-in electric vehicles. Technol. Econ. Smart Grids Sustain. Energy 6(1), (2021)

  113. Vasant, P., Marmolejo, J.A., Litvinchev, I., Aguilar, R.R.: Nature-inspired meta-heuristics approaches for charging plug-in hybrid electric vehicle. Wirel. Netw. 26(7), 4753–4766 (2020). https://doi.org/10.1007/s11276-019-01993-w

    Article  Google Scholar 

  114. Aldhanhani, T., Shaaban, M., Al-Durra, A., El-Saadany, E., Zeineldin, H.: Plug-in electric vehicles smart charging mechanisms for cost minimization and ancillary service provision. J. Eng. 2021(3), 166–176 (2021)

    Google Scholar 

  115. Shi, R., Li, S., Zhang, P., Lee, K.Y.: Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization. Renew. Energy 153, 1067–1080 (2020). https://doi.org/10.1016/j.renene.2020.02.027

    Article  Google Scholar 

  116. Moghaddas-Tafreshi, S.M., Jafari, M., Mohseni, S., Kelly, S.: Optimal operation of an energy hub considering the uncertainty associated with the power consumption of plug-in hybrid electric vehicles using information gap decision theory. Int. J. Electr. Power Energy Syst. 112(April), 92–108 (2019). https://doi.org/10.1016/j.ijepes.2019.04.040

    Article  Google Scholar 

  117. Zhao, T., **ao, J., Koh, L.H., Wang, P., Ding, Z.: strategic day-ahead bidding for energy hubs with electric vehicles. In: 2nd IEEE Conference on Energy Internet and Energy System Integration, EI2 2018 - Proceedings, (2018)

  118. Tashviri, M.H., Ghaffarzadeh, N.: Method for EV charging in stochastic smart microgrid operation with fuel cell and renewable energy source (RES) units. IET Electr. Syst. Transport. 10(3), 249–258 (2020)

    Article  Google Scholar 

  119. Morshed, M.J., Hmida, J.B., Fekih, A.: A probabilistic multi-objective approach for power flow optimization in hybrid wind-PV-PEV systems. Appl. Energy 211(November 2017), 1136–1149 (2018). https://doi.org/10.1016/j.apenergy.2017.11.101

    Article  Google Scholar 

  120. Godazi Langeroudi, A.S., Sedaghat, M., Pirpoor, S., Fotouhi, R., Ghasemi, M.A.: Risk-based optimal operation of power, heat and hydrogen-based microgrid considering a plug-in electric vehicle. Int. J. Hydrogen Energy 46(58), 30 031-30 047 (2021). https://doi.org/10.1016/j.ijhydene.2021.06.062

    Article  Google Scholar 

  121. Rahbari, O., Vafaeipour, M., Omar, N., Rosen, M.A., Hegazy, O., Timmermans, J.M., Heibati, S., Bossche, P.V.D.: An optimal versatile control approach for plug-in electric vehicles to integrate renewable energy sources and smart grids. Energy 134, 1053–1067 (2017). https://doi.org/10.1016/j.energy.2017.06.007

    Article  Google Scholar 

  122. Sadeghi, D., Hesami Naghshbandy, A., Bahramara, S.: Optimal sizing of hybrid renewable energy systems in presence of electric vehicles using multi-objective particle swarm optimization. Energy 209, 118471 (2020). https://doi.org/10.1016/j.energy.2020.118471

    Article  Google Scholar 

  123. Huang, Z., **e, Z., Zhang, C., Chan, S.H., Milewski, J., **e, Y., Yang, Y., Hu, X.: Modeling and multi-objective optimization of a stand-alone PV-hydrogen-retired EV battery hybrid energy system. Energy Convers. Manag. 181(August 2018), 80–92 (2019)

    Article  Google Scholar 

  124. Yusuf, J., Hasan, A.S., Ula, S.: Impacts analysis field implementation of plug-in electric vehicles participation in demand response and critical peak pricing for commercial buildings. In: 2021 IEEE Texas Power and Energy Conference, TPEC 2021, pp. 0–5, (2021)

  125. Sadeghian, O., Nazari-Heris, M., Abapour, M., Taheri, S.S., Zare, K.: Improving reliability of distribution networks using plug-in electric vehicles and demand response. J. Mod. Power Syst. Clean Energy 7(5), 1189–1199 (2019)

    Article  Google Scholar 

  126. Sabzehgar, R., Kazemi, M.A., Rasouli, M., Fajri, P.: Cost optimization and reliability assessment of a microgrid with large-scale plug-in electric vehicles participating in demand response programs. Int. J. Green Energy 17(2), 127–136 (2020). https://doi.org/10.1080/15435075.2019.1700125

    Article  Google Scholar 

  127. Khederzadeh, M.: Impact of demand response and electric vehicles on the operation of microgrids. (2013)

  128. Mahesh, A., Sushnigdha, G.: Optimal sizing of photovoltaic/wind/battery hybrid renewable energy system including electric vehicles using improved search space reduction algorithm. J. Energy Storage 56, 105866 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambati Bhimaraju.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhimaraju, A., Mahesh, A. Recent developments in PV/wind hybrid renewable energy systems: a review. Energy Syst (2024). https://doi.org/10.1007/s12667-024-00679-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12667-024-00679-3

Keywords

Navigation