Log in

Optimization of SD-3 Nickel-Based Alloy Coating by Single Channel Laser Cladding Using Orthogonal Experimental Method

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Using an orthogonal experimental design, a single-track SD-3 nickel-based alloy coating was laser clad onto the surface of 42CrMo steel to determine the best process parameters. The single-track coating’s microscopic structure and hardness were examined and tested. The findings demonstrated that an alloy coating with low fracture density and high hardness was produced using the process parameters of the laser power of 2100 W, the scanning speed of 8 mm/s, and the feeding speed of 0.8 r/min, and a strong metallurgical link was formed between the molten layer and the substrate. The SD-3 nickel-based alloy coating was mainly composed of FeNi3 and γ-(Ni, Fe) solid solution phases. With a microhardness of 683.2 (HV0.1), which was 2.4 times higher than that of the 42CrMo steel substrate, the SD-3 nickel-based alloy coating had a harder surface than the underlying material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. Uriondo A, Esperon-Miguez M, and Perinpanayagam S, Proc Instit Mech Eng Part G-J Aerosp Eng 229 (2015) 2132. https://doi.org/10.1177/0954410014568797

    Article  CAS  Google Scholar 

  2. Weng F, Chen C Z, and Yu H J, Mater Design 58 (2014) 412. https://doi.org/10.1016/j.matdes.2014.01.077

    Article  CAS  Google Scholar 

  3. Li N, Huang S, Zhang G, Qin R, Liu W, and **ong H, J Mater Sci Technol 35 (2019) 242. https://doi.org/10.1016/j.jmst.2018.09.002

    Article  CAS  Google Scholar 

  4. Ma M M, Wang Z M, and Zeng X Y, Mater Sci Eng A-Struct Mater Prop Microstruct Process 685 (2017) 265. https://doi.org/10.1016/j.msea.2016.12.112

    Article  CAS  Google Scholar 

  5. Abioye T E, McCartney D G, and Clare A T, J Mater Process Technol 217 (2015) 232. https://doi.org/10.1016/j.jmatprotec.2014.10.024

    Article  CAS  Google Scholar 

  6. Guo C, Zhou J, Chen J, Zhao J, and Yu Y, Surface Coat Technol 205 (2010) 2142. https://doi.org/10.1016/j.surfcoat.2010.08.125

    Article  CAS  Google Scholar 

  7. Belei C, Fitseva V, Dos Santos J F, and Alcântara N G, Surface Coat Technol 329 (2017) 163. https://doi.org/10.1016/j.surfcoat.2017.09.050

    Article  CAS  Google Scholar 

  8. Kuo T Y, Chin W H, Chien C S, and Hsieh Y H, Surface Coat Technol 372 (2019) 409. https://doi.org/10.1016/j.surfcoat.2019.05.003

    Article  CAS  Google Scholar 

  9. Bai Y, ** Y, Gao K, Yang H, Pang X, Yang X, and Volinsky A A, Int J Fatigue 125 (2019) 439. https://doi.org/10.1016/j.ijfatigue.2019.04.017

    Article  CAS  Google Scholar 

  10. Lai Q, Abrahams R, Yan W, Qiu C, Mutton P, Paradowska A, Soodi M, and Wu X, J Mater Process Technol 263 (2019) 1. https://doi.org/10.1016/j.jmatprotec.2018.07.035

    Article  CAS  Google Scholar 

  11. Barekat M, Razavi R S, and Ghasemi A, J Mater Eng Perform 26 (2017) 3226. https://doi.org/10.1007/s11665-017-2745-0

    Article  CAS  Google Scholar 

  12. Ray A, Arora K S, Lester S, and Shome M, J Mater Process Technol 214 (2014) 1566. https://doi.org/10.1016/j.jmatprotec.2014.02.027

    Article  CAS  Google Scholar 

  13. Malikongwa K, Tlotleng M, and Olakanmi E O, Int J Adv Manuf Technol 114 (2021) 481. https://doi.org/10.1007/s00170-021-06718-y

    Article  Google Scholar 

  14. Singh S, Goyal D K, Kumar P, and Bansal A, Int J Refract Metals Hard Mater 105 (2022) 105825. https://doi.org/10.1016/j.ijrmhm.2022.105825

    Article  CAS  Google Scholar 

  15. Liu H, Hu Z, Qin X, Wang Y, Zhang J, and Huang S, Int J Adv Manuf Technol 91 (2017) 3967. https://doi.org/10.1007/s00170-017-0066-y

    Article  Google Scholar 

  16. Bin L, He** L, **ngbin J, Yuxin L, and Peikang B, Iop Conf Ser Mater Sci Eng 307 (2018) 012035. https://doi.org/10.1088/1757-899X/307/1/012035

    Article  Google Scholar 

  17. Almetwally A A, J Natural Fibers 17 (2020) 1468. https://doi.org/10.1080/15440478.2019.1579156

    Article  CAS  Google Scholar 

  18. Linsen S, Bo W, and Yayin H, Mech Eng Sci (2019). https://doi.org/10.33142/me.v1i2.1656

    Article  Google Scholar 

  19. Hu G, Yang Y, Qi K, Lu X, and Li J, Trans Indian Instit Metals 73 (2020) 2623. https://doi.org/10.1016/j.optlastec.2021.107805

    Article  CAS  Google Scholar 

  20. Shi B, Li T, Guo Z, Zhang X, and Zhang H, Opt Laser Technol 149 (2022) 107805. https://doi.org/10.1016/j.optlastec.2021.107805

    Article  CAS  Google Scholar 

  21. Huang Y, and Zeng X, Appl Surface Sci 256 (2010) 5985. https://doi.org/10.1016/j.apsusc.2010.03.106

    Article  CAS  Google Scholar 

  22. Xuan W, and Leung D Y C, Appl Energy 88 (2011) 3615. https://doi.org/10.1016/j.apenergy.2011.04.041

    Article  CAS  Google Scholar 

  23. Lee Y, Nordin M, Babu S S, and Farson D F, Metall Mater Trans 45 (2014) 1520. https://doi.org/10.1007/s11663-014-0054-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No. LZ22E030003. The authors are grateful to Ningbo Haitian Laser Machinery Manufacturing Co., Ltd for providing the laser facility.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the conception and design of the study. ZY, SS, and YZ were responsible for material preparation, data collection, and analysis. ZY, YZ, SS, TX, YL, and QY drafted the original manuscript while GX reviewed and edited it. YC was responsible for funding acquisition while ZL contributed to experimental ideas and design. The final manuscript was read and approved by all authors.

Corresponding author

Correspondence to Zhixiang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zou, Y., Shi, S. et al. Optimization of SD-3 Nickel-Based Alloy Coating by Single Channel Laser Cladding Using Orthogonal Experimental Method. Trans Indian Inst Met 77, 1509–1518 (2024). https://doi.org/10.1007/s12666-023-03249-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03249-w

Keywords

Navigation