Log in

Effect of Quenching and Tempering Processes on Sharpness of Knives Made from 6Cr13 High-Carbon Martensitic Stainless Steel

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present work, the effect of quenching and tempering processes on the sharpness performance of 6Cr13 high-carbon martensitic stainless steel knives was investigated. The results show that the sharp persistence of the knife increases as the quenching temperature increases from 975 to 1125 °C. The initial sharpness first increases and then decreases, reaching a maximum of 95.9 mm at 1075 °C. When the tempering temperature is below 300 °C, the initial sharpness and sharp persistence of the knife both decrease with the increase of tempering temperature. The secondary carbide in the steel dissolved and the carbide content decrease continuously with the increase of quenching temperature. After the quenching temperature exceeds 1050 °C, a large amount of secondary carbide solid solution is formed into the austenite. The carbides precipitate from steel matrix after the tempering temperature exceeds 400 °C. The refinement and dissolution of secondary carbides are the main reasons for the good sharpness performance of 6Cr13 steel knives. The variation of hardness has little effect on the sharpness performance. However, the cutting capacity of knives fluctuates more sharply as the hardness decreases. Quenching at 1050–1075 °C and tempering at 180–220 °C can obtain 6Cr13 steel knives with optimal sharpness, hardness and fine grain size combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. McGorry R W, Dowd P C, and Dempsey P G, Appl Ergon 34 (2003) 375. https://doi.org/10.1016/S0003-6870(03)00041-3

    Article  Google Scholar 

  2. Reilly G A, McCormack B A O, and Taylor D, J Mater Process Technol 153 (2004) 261. https://doi.org/10.1016/j.jmatprotec.2004.04.297

    Article  Google Scholar 

  3. Su Z, Huang T, and Fan L, Mater Sci Eng 472 (2019) 012054

    CAS  Google Scholar 

  4. Marsot J, Claudon L, and Jacqmin M, Appl Ergon 38 (2007) 83. https://doi.org/10.1016/j.apergo.2005.12.007

    Article  Google Scholar 

  5. Zhu Q, Li J, and Zhang J, J Mater Eng Perform 28 (2019) 4511. https://doi.org/10.1007/s11665-019-04209-6

    Article  CAS  Google Scholar 

  6. Wu D, Zhang Q, and Liu W, Metals 12 (2022) 472. https://doi.org/10.3390/met12030472

    Article  CAS  Google Scholar 

  7. Roscioli G, Taheri-Mousavi S M, and Tasan C C, Science 369 (2020) 689. https://doi.org/10.1126/science.aba9490

    Article  CAS  Google Scholar 

  8. Cobb H M, The History of Stainless Steel, Geauga County, ASM International (2010), p 1.

    Book  Google Scholar 

  9. Lo K H, Shek C H, and Lai J K L, Mater Sci Eng R Rep 65 (2009) 39. https://doi.org/10.1016/j.mser.2009.03.001

    Article  CAS  Google Scholar 

  10. Li J, and Shi C, Carbide in Special Steel, Springer, Singapore (2021), pp 1–57.

    Book  Google Scholar 

  11. Chen C Y, Hung F Y, and Lui T S, Metals 6 (2016) 35. https://doi.org/10.3390/met6020035

    Article  CAS  Google Scholar 

  12. Zhu Q, Li J, and Shi C, J Mater Eng Perform 24 (2015) 4313. https://doi.org/10.1007/s11665-015-1723-7

    Article  CAS  Google Scholar 

  13. Park J Y, and Park Y S, Corrosion (2006). https://doi.org/10.5006/1.3279913

    Article  Google Scholar 

  14. Yuan L L, Han J T, and Liu J, Appl Mech Mater 401 (2013) 916. https://doi.org/10.4028/www.scientific.net/AMM.401-403.916

    Article  CAS  Google Scholar 

  15. Siqueira J S, de Abreu Alves M R, and Marcial Luiz T, Mater Corros 72 (2021) 1752. https://doi.org/10.1002/maco.202112483

    Article  CAS  Google Scholar 

  16. Ma D, Chi H, and Zhou J, J Iron Steel Res Int 19 (2012) 56. https://doi.org/10.1016/S1006-706X(12)60074-0

    Article  CAS  Google Scholar 

  17. Speich G R, and Leslie W C, Metall Trans 3 (1972) 1043. https://doi.org/10.1007/BF02642436

    Article  CAS  Google Scholar 

  18. Huang Q, Yao M, and Timokhina I, Metall Mater Trans A 50 (2019) 3663. https://doi.org/10.1007/s11661-019-05272-3

    Article  CAS  Google Scholar 

  19. Vitek J M, and Klueh R L, Metall Trans A 14 (1983) 1047. https://doi.org/10.1007/BF02670443

    Article  CAS  Google Scholar 

  20. GB/T 8362-1987, Retained Austenite in Steel-Quantitative Determination-Method of X-ray Diffractometer, Bei**g, China (1987).

  21. ISO, ISO 8442-5, Materials and Articles in Contact with Foodstuffs—Cutlery and Table Holloware—Part 5: Specification for Sharpness and Edge Retention Test of Cutlery.

  22. Yang Y, Zhao H, and Dong H, J Mater Eng Perform 29 (2020) 3868.

    Article  CAS  Google Scholar 

  23. Zhu Q T, Li J, Zhang J, and Shi C B, J Mater Eng Perform 28 (2019) 4511.

    Article  CAS  Google Scholar 

  24. Gilbert R, in International Symposium Held at the 34th Mechanical Working and Steel Processing Conference, Montreal, Quebec, Canada, Iron and Steel Society (1992).

  25. Krishna S C, Gangwar N K, and Jha A K, J Mater Eng Perform 24 (2015) 1656. https://doi.org/10.1007/s11665-015-1431-3

    Article  CAS  Google Scholar 

  26. Kashyap B P, and Tangri K, Acta Metall Mater 43 (1995) 3971. https://doi.org/10.1016/0956-7151(95)00110-H

    Article  CAS  Google Scholar 

  27. Li X, Ma X, and Subramanian S V, Mater Sci Eng A 616 (2014) 141. https://doi.org/10.1016/j.msea.2014.07.100

    Article  CAS  Google Scholar 

  28. Morito S, Saito H, and Ogawa T, ISIJ Int 45 (2005) 91. https://doi.org/10.2355/isi**ternational.45.91

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant No. 51874030), the Guangdong Yang Fan Innovative & Entrepreneurial Research Team Program (Grant No. 2016YT03C071) and the Guangdong Science and Technology Special Fund Project (Grant No. SDZX202005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **g Li.

Ethics declarations

Conflict of interest

The authors declare that no conflicts of interest and ethical rules could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Li, J., Li, S. et al. Effect of Quenching and Tempering Processes on Sharpness of Knives Made from 6Cr13 High-Carbon Martensitic Stainless Steel. Trans Indian Inst Met 77, 81–93 (2024). https://doi.org/10.1007/s12666-023-03058-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03058-1

Keywords

Navigation