Log in

Microstructure Evolution During Annealing of Inconel 625 and the Effect of Partially Recrystallized Structure on Mechanical Properties

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This work produced partially recrystallized microstructures by cold rolling and annealing Inconel 625 sheets to simultaneously achieve excellent strength and ductility. The results showed that the sample achieved excellent ultimate tensile strength (1010 MPa) while retaining good total elongation (68%) when most of its equiaxed grains coexisted with a small number of its non-recrystallized elongated grains. The microstructural heterogeneity is caused by preferential recrystallization at high-strain zones due to non-uniform deformation. And the coexistence of excellent strength and ductility is attributed to the coexistence of non-recrystallized grains at a relatively high internal dislocation density and small-sized strain-free recrystallized grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Marchese G, Lorusso M, Parizia S, Bassini E, and Biamino S, Mater Sci Eng A 729 (2018) 64. https://doi.org/10.1016/j.msea.2018.05.044

    Article  CAS  Google Scholar 

  2. Shankar V K, Rao B S, and Mannan S L, J Nucl Mater 288 (2001) 222. https://doi.org/10.1016/S0022-3115(00)00723-6

    Article  CAS  Google Scholar 

  3. Mathew M D, Parameswaran P, and Rao K B S, Mater Charact 59 (2008) 508. https://doi.org/10.1016/j.matchar.2007.03.007

    Article  CAS  Google Scholar 

  4. Chakravartty J K, Singh J B, and Sundararaman M, J Mater Sci Technol 20 (2012) 702. https://doi.org/10.1179/1743284711Y.0000000118

    Article  CAS  Google Scholar 

  5. Kou H B, Li W G, Ma J Z, Shao J X, and Peng F L, Int J Mech Sci 140 (2018) 83. https://doi.org/10.1016/j.ijmecsci.2018.02.042

    Article  Google Scholar 

  6. Páramo-Kañetas P J, Orozco-Mendoza E A, Calvo J, Cabrera-Marrero J M, and Zamora-Antuñano M A, J Alloys Compd 907 (2022) 164403. https://doi.org/10.1016/j.jallcom.2022.164403

    Article  CAS  Google Scholar 

  7. Gu J, Ni S, Liu Y, and Song M, Mater Sci Eng A 755 (2019) 289. https://doi.org/10.1016/j.msea.2019.04.025

    Article  CAS  Google Scholar 

  8. Gu J, and Song M, Scr Mater 162 (2019) 345. https://doi.org/10.1016/j.scriptamat.2018.11.042

    Article  CAS  Google Scholar 

  9. Wu Y, ** X, Zhang M, Yang H, Qiao J, and Wu Y, Mater Today Commun 28 (2021) 102718. https://doi.org/10.1016/j.mtcomm.2021.102718

    Article  CAS  Google Scholar 

  10. Liu Y, Lai R, He C, Li K, and Yang Y, Mater Charact 186 (2022) 111795. https://doi.org/10.1016/j.matchar.2022.111795

    Article  CAS  Google Scholar 

  11. Hui D U, Cai J, Wang Y, Yao J, and Liu X W, Trans Nonferrous Met Soc China 32 (2022) 947. https://doi.org/10.1016/S1003-6326(22)65841-2

    Article  Google Scholar 

  12. Zhang G, Ma W, Tang Y, Wang F, and Liu R, Mater Sci Eng A 833 (2022) 142545. https://doi.org/10.1016/J.MSEA.2021.142545

    Article  CAS  Google Scholar 

  13. Liu D, Ding H, Han D, and Cai M, Mater Sci Eng. A 833–26 (2022) 142553. https://doi.org/10.1016/j.msea.2021.142553

    Article  CAS  Google Scholar 

  14. Liu X, Gao H, Wu H, Pan H, and Shu B, Mater Sci Eng A 808 (2021) 140915. https://doi.org/10.1016/j.msea.2021.140915

    Article  CAS  Google Scholar 

  15. Shuai Z, Yang W, Lin P, Rong R, and Guo Y, Trans Nonferrous Met Soc China 32–8 (2020) 2587. https://doi.org/10.1016/S1003-6326(22)65968-5

    Article  Google Scholar 

  16. D’Yachenko S S, and Fomina O P, Met Sci Heat Treat 12 (1970) 7.

    Article  Google Scholar 

  17. Ogawa T, Maruyama N, Sugiura N, and Yoshinaga N, ISIJ Int 50 (2010) 469. https://doi.org/10.2355/isi**ternational.50.469

    Article  CAS  Google Scholar 

  18. Li Z Y, Fu L M, Zheng H, Yu R, and Shan A D, Metall Mater Trans A 50 (2019) 3223. https://doi.org/10.1016/j.msea.2019.04.025

    Article  CAS  Google Scholar 

  19. Wang X, Ding Y, Gao Y, Ma Y, and Gan B, Mater Sci Eng A 823 (2021) 141739. https://doi.org/10.1016/j.msea.2021.141739

    Article  CAS  Google Scholar 

  20. Madhavan R, Ray R K, and Suwas S, Philos Mag 96 (2016) 3177. https://doi.org/10.1080/14786435.2016.1229061

    Article  CAS  Google Scholar 

  21. Raabe D, Zhao Z, Park S J, and Roters F, Acta Mater 50 (2002) 421. https://doi.org/10.1016/S1359-6454(01)00323-8

    Article  CAS  Google Scholar 

  22. Höppel H W, Korn M, Lapovok R, and Mughrabi H, J Phys Conf Ser 240 (2010) 12147. https://doi.org/10.1088/1742-6596/240/1/012147

    Article  CAS  Google Scholar 

  23. Humphreys F J, and Hatherly M, Recrystallization and related annealing phenomena, 2nd edn. Elsevier (2004).

    Google Scholar 

  24. Saleh A A, Haase C, Perelomaa E V, Molodov D A, and Gazderc A A, Acta Mater 70 (2014) 259. https://doi.org/10.1016/j.actamat.2014.02.033

    Article  CAS  Google Scholar 

  25. Polkowska A, Lech S, and Polkowski W, Mater Sci Eng A 787 (2020) 139478. https://doi.org/10.1016/j.msea.2020.139478

    Article  CAS  Google Scholar 

  26. Donadille C, Valle R, Dervin P, and Penelle R, Acta Met 37 (1989) 1547. https://doi.org/10.1016/0001-6160(89)90123-5

    Article  CAS  Google Scholar 

  27. Bhattacharjee P P, Ray R K, and Tsuji N, Acta Mater 57 (2009) 2166. https://doi.org/10.1016/j.actamat.2009.01.015

    Article  CAS  Google Scholar 

  28. Zhang J, Wang B, and Yi D, Mater Sci Eng A 764 (2019) 138252. https://doi.org/10.1016/j.msea.2019.138252

    Article  CAS  Google Scholar 

  29. Barrales-Mora L A, Lü Y, and Molodov D A, Steel Res. Int 82 (2011) 119. https://doi.org/10.1002/srin.201000261

    Article  CAS  Google Scholar 

  30. Gottstein G, Acta Mater 32 (1984) 1117. https://doi.org/10.1016/0001-6160(84)90015-4

    Article  CAS  Google Scholar 

  31. Bracke L, Verbeken K, and Kestens L A I, Scr Mater 66 (2012) 1017. https://doi.org/10.1016/j.scriptamat.2012.02.048

    Article  CAS  Google Scholar 

  32. Hansen N, Scr Mater 51 (2004) 801. https://doi.org/10.1016/j.scriptamat.2004.06.002

    Article  CAS  Google Scholar 

  33. Ji F, Song W, Ma Y, Li C, Bleck W, and Wang G, Mater Sci Eng A 733 (2018) 87. https://doi.org/10.1016/j.msea.2018.07.023

    Article  CAS  Google Scholar 

  34. Castan C, Montheilletb F, and Perlade A, Scr Mater 68 (2013) 360. https://doi.org/10.1016/j.scriptamat.2012.07.037

    Article  CAS  Google Scholar 

  35. Sinclair C W, Mithieux J D, Schmitt J H, and Brechet Y, Metall Mater Trans A 36 (2005) 3205. https://doi.org/10.1007/s11661-005-0091-6

    Article  Google Scholar 

  36. Wang X, Changjun C, Lanlan Q, and Min Z, Phys Met Metall 122 (2021) 896. https://doi.org/10.1134/S0031918X2109012X

    Article  Google Scholar 

  37. Idury K S N, and Chakkravarthy V, Trans Indian Natl Acad Eng 6 (2021) 975. https://doi.org/10.1007/S41403-021-00269-0

    Article  Google Scholar 

  38. Li M, Wang L, Yang H, Zhang S, Lin X, and Huang W, Mater Sci Eng A 854 (2022) 143813. https://doi.org/10.1016/j.msea.2022.143813

    Article  CAS  Google Scholar 

  39. Yang F, Dong L, **anjun H, Zhou X, **e Z, and Fang F, J Mater Sci 55 (2022) 5613. https://doi.org/10.1007/s10853-020-04375-2

    Article  CAS  Google Scholar 

  40. Hu Y L, Li Y L, Zhang S Y, Lin X, Wang Z H, and Huang W D, Mater Sci Eng A 772 (2020) 138711. https://doi.org/10.1016/j.msea.2019.138711

    Article  CAS  Google Scholar 

  41. Sukumaran A, Gupta R K, and Anil Kumar V, J Mater Eng Perform 26 (2017) 3048. https://doi.org/10.1007/s11665-017-2774-8

    Article  CAS  Google Scholar 

  42. Wang X, Hu Q, Li T, Liu W, Tang D, Hu Z, and Liu K, Met 12 (2022) 510. https://doi.org/10.3390/MET12030510

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the Key Core Technology and Common Technology Research and Development Project of Shanxi Province (20201102017). Excellent Innovation Project for Graduate students in Shanxi Province (2021Y666), and Central government guided local science and Technology Development Fund Project (YDZJSX2021A036).

Funding

Key Core Technology and Common Technology Research and Development Project of Shanxi Province, 20201102017, Yugui Li, Excellent Innovation Project for Graduate students in Shanxi Province, 2021Y666, Yaohui Song, Central government guided local science and Technology Development Fund Project, YDZJSX2021A036, Yugui Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yugui Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, Y., Song, Y. et al. Microstructure Evolution During Annealing of Inconel 625 and the Effect of Partially Recrystallized Structure on Mechanical Properties. Trans Indian Inst Met 76, 2043–2053 (2023). https://doi.org/10.1007/s12666-022-02865-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02865-2

Keywords

Navigation