Log in

Solidification Simulation and Experimental Validation of Single-Phase Fe–Co–Cr–Ni–V–Al High-Entropy Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

For the first time, the numerical simulation to understand the solidification phenomena during suction casting of single-phase six component Fe–Co–Cr–Ni–V–Al FCC HEA is reported here along with the experimental validation and comparison with thermodynamic simulation using CALPHAD approach. The present study elaborates the complete information about solidification behavior, distribution of temperature in metal casting and heat transfer in metal casting and metal-mold interface and mold to the environment and phase transformation mechanism during solidification. The simulated results are validated with the experimental measured hardness using a micro-Vickers hardness tester at 500 g load and the measured hardness of the FCC HEA varies from 220 ± 2.98 to 259 ± 5.95 HV. The developed simulation model is in good agreement and acceptable with the experimental results and thermodynamic simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sabat R K, Brahme A P, Mishra R K, Inal K, and Suwas S, Acta Mater 161 (2018) 246. https://doi.org/10.1016/j.actamat.2018.09.023

    Article  CAS  Google Scholar 

  2. Kandalam S, Sabat R K, Bibhanshu N, Avadhani G S, Kumar S, and Suwas S, Mater Sci Eng A 687 (2017) 85. https://doi.org/10.1016/j.msea.2016.12.129

    Article  CAS  Google Scholar 

  3. Jain S, Jain R, Rahul M R, Samal S, and Kumar V, Trans Indian Inst Met 71 (2018) 2819. https://doi.org/10.1007/s12666-018-1420-y

    Article  CAS  Google Scholar 

  4. Chen S, Tong Y, and Liaw P K, Entropy 20 (2018). DOI: https://doi.org/10.3390/e20120937.

  5. George E P, Curtin W A, and Tasan C C, Acta Mater 188 (2020) 435. https://doi.org/10.1016/j.actamat.2019.12.015

    Article  CAS  Google Scholar 

  6. Tian F, Varga L K, Chen N, Shen J, and Vitos L, Intermet (Barking) 58 (2015) 1. https://doi.org/10.1016/j.intermet.2014.10.010

    Article  CAS  Google Scholar 

  7. Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, and Chang S Y, Adv Eng Mater 6 (2004) 299. https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  8. Jain R, Rahul M R, Jain S, Samal S, and Kumar V, Trans Indian Inst Met 71 (2018) 2795. https://doi.org/10.1007/s12666-018-1437-2

    Article  CAS  Google Scholar 

  9. Tsai M H, and Yeh J W, Mat Res Lett 2 (2014) 107. https://doi.org/10.1080/21663831.2014.912690

    Article  CAS  Google Scholar 

  10. Zhang Y, and Li R, Entropy 22 (2020) 1. https://doi.org/10.3390/e22101158

    Article  Google Scholar 

  11. Choudhari C M, Narkhede B E, and Mahajan S K, Int J Comput Appl 78 (2013) 23. https://doi.org/10.5120/13607-1399

    Article  Google Scholar 

  12. Venkatesan A, Gopinath V M, and Rajadurai A, J Mater Process Technol 168 (2005) 10. https://doi.org/10.1016/j.jmatprotec.2004.09.090

    Article  CAS  Google Scholar 

  13. Ferhathullah Hussainy S, Viquar Mohiuddin M, Laxminarayana P, and Sundarrajan S, https://www.ijmer.com/. 5 (March) (2015), 28.

  14. Sahoo S, and Ghosh S, Steel Res Int 85 (2014) 207. https://doi.org/10.1002/srin.201200262

    Article  CAS  Google Scholar 

  15. Assis E, Katsman L, Ziskind G, and Letan R, Int J Heat Mass Transf 50 (2007) 1790. https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.007

    Article  Google Scholar 

  16. ANSYS Fluent Tutorial Guide 18, ANSYS Fluent Tutorial Guide 18 2018 (January) 1052.

  17. Sussman M, J Comput Phys 114 (1994) 146. https://doi.org/10.1006/jcph.1994.1155

    Article  Google Scholar 

  18. Jalali A, and Najafi A F, J Therm Sci 19 (2010) 419. https://doi.org/10.1007/s11630-010-0403-z

    Article  Google Scholar 

  19. S. Jain, P. Kumar, V. Kumar, A. Ghosh, S. Samal, Philos Mag (2022) 1. https://doi.org/10.1080/14786435.2022.2084793.

  20. M. R. Bin Khiyon, S. M. Salleh, MATEC Web of Conferences 90 (2016). https://doi.org/10.1051/matecconf/20179001014.

Download references

Acknowledgements

The Authors would like to thank Ministry of Human Resources and Development for funding Teaching Assistance scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Samal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S., L, N., Kumar, V. et al. Solidification Simulation and Experimental Validation of Single-Phase Fe–Co–Cr–Ni–V–Al High-Entropy Alloy. Trans Indian Inst Met 76, 1719–1729 (2023). https://doi.org/10.1007/s12666-022-02821-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02821-0

Keywords

Navigation