Log in

Strain Rate Loading Effects on Fiber-Reinforced Polymeric Composites with and Without Damage: A Comprehensive Review

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This research presents a comprehensive review regarding polymeric composite with and without damages under the influences of high-strain loading. Additionally, the kind of strain loading on the polymeric structure or structural component is studied from the year 2011 to 2022. However, most of the studies have been consolidated from 2017 to 2022. Also, this review reveals the necessity of a damaged structure under high-strain loading. The various numerical models, i.e., the rate-dependent cohesive zone model, thermomechanical numerical models, enhanced equation of motion and viscosity type of constitutive model, are helpful for easy understanding of different influencing parameters including the strain rate effects provided in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wan Y, Sun B & Gu B, Mech. Mater., 94 (2016) 1. https://doi.org/10.1016/j.mechmat.2015.11.012.

    Article  Google Scholar 

  2. Mamidi N & Barrera E, Mater. Res. Soc., 7 (2017) 913. https://doi.org/10.1557/mrc.2017.117.

    Article  CAS  Google Scholar 

  3. Mamidi N, Barrera E & Elías-Zúñiga A, Mater. Res. Soc., 8 (2018) 1395. https://doi.org/10.1557/mrc.2018.193.

    Article  CAS  Google Scholar 

  4. Fan J & Wang C, Compos. Part B Eng., 152 (2018) 96. https://doi.org/10.1016/j.compositesb.2018.06.025.

    Article  CAS  Google Scholar 

  5. Chen D, Luo Q, Meng M & Sun G, Compos. Part B, 176 (2019) 107191. https://doi.org/10.1016/j.compositesb.2019.107191.

    Article  CAS  Google Scholar 

  6. Fan JT, Weerheijm J & Sluys LJ, Mech. Mater., 95 (2016) 49. https://doi.org/10.1016/j.mechmat.2015.12.005.

    Article  Google Scholar 

  7. Mamidi N, Manuel R, Delgadillo V & Gonz A, Mater. Sci. Eng. C, 120 (2021) 111698. https://doi.org/10.1016/j.msec.2020.111698.

    Article  CAS  Google Scholar 

  8. Paknahad A, Goudarzi M, Kucko NW, Acta Biomater., 119 (2021) 458. https://doi.org/10.1016/j.actbio.2020.10.014.

    Article  CAS  Google Scholar 

  9. Mamidi N, Zuníga AE & Villela-castrejón J, Mater. Sci. Eng. C, 112 (2020) 110928. https://doi.org/10.1016/j.msec.2020.110928.

    Article  CAS  Google Scholar 

  10. Shergold OA, Fleck NA & Radford D, Int. J. Impact Eng., 32 (2006) 1384. https://doi.org/10.1016/j.ijimpeng.2004.11.010.

    Article  Google Scholar 

  11. Zhang S, Caprani CC & Heidarpour A, Constr. Build. Mater., 171 (2018) 984. https://doi.org/10.1016/j.conbuildmat.2018.03.113.

    Article  CAS  Google Scholar 

  12. Vural M & Ravichandran G, in Recent Advances in Experimental Mechanics, 31–42. https://doi.org/10.1007/0-306-48410-2_4 (Kluwer Academic Publishers, 2006).

  13. Donato GHB & Bianchi M, J. Mater. Res. Technol., 1 (2012) 2. https://doi.org/10.1016/S2238-7854(12)70002-9.

    Article  CAS  Google Scholar 

  14. Farrokh B & Khan AS, Eur. J. Mech. A Solids, 29 (2010) 274. https://doi.org/10.1016/j.euromechsol.2009.08.004.

    Article  Google Scholar 

  15. Caverzan A & Cadoni E, Int. J. Impact Eng., 45 (2012) 28. https://doi.org/10.1016/j.ijimpeng.2012.01.006.

    Article  Google Scholar 

  16. Al-mosawe A, Al-mahaidi R & Zhao X, Compos. Struct., 180 (2017) 9. https://doi.org/10.1016/j.compstruct.2017.08.005.

    Article  Google Scholar 

  17. Mündecke E & Mechtcherine V, Cem. Concr. Compos., 105 (2020) 103423. https://doi.org/10.1016/j.cemconcomp.2019.103423.

    Article  CAS  Google Scholar 

  18. Eskandari S, Andrade Pires FM, Camanho PP, Cui H, Petrinic N, Marques AT, & Eskandari S, Eng. Fail. Anal., 101 (2019) 257. https://doi.org/10.1016/j.engfailanal.2019.03.008.

    Article  Google Scholar 

  19. S Ravindran, S Sockalingam, K Kodagali, A Kidane, MA Sutton, B Justusson, J Pang, Compos. Sci. Technol., 198 (2020) 108310. https://doi.org/10.1016/j.compscitech.2020.108310.

    Article  CAS  Google Scholar 

  20. Kim M, Yun T & Hong S, Polym. Test., (2020). https://doi.org/10.1016/j.polymertesting.2020.107010.

    Article  Google Scholar 

  21. Liao L, Zhao J, Zhang F, Li S & Wang Z, Constr. Build. Mater., 261 (2020) 119906. https://doi.org/10.1016/j.conbuildmat.2020.119906.

    Article  Google Scholar 

  22. Akl W, Ali M, Aldraihem O & Baz A, Finite Elem. Anal. Des., 186 (2021) 103501. https://doi.org/10.1016/j.finel.2020.103501.

    Article  Google Scholar 

  23. Li D, Han W & Jiang L, Extrem. Mech. Lett., 45 (2021) 101291. https://doi.org/10.1016/j.eml.2021.101291.

    Article  Google Scholar 

  24. Sultan MTH, Kar VR, Panda SK & Jayakrishna K, Advanced Composite Materials and Structures, https://doi.org/10.1201/9781003158813 (CRC Press, 2022).

  25. Hadji L, Avcar M & Civalek Ö, Free vibration of carbon nanotube–reinforced composite beams under the various boundary conditions, (CRC Press, 2022).

  26. Civalek Ö & Avcar M, Eng. Comput., 38 (2022) 489. https://doi.org/10.1007/s00366-020-01168-8.

    Article  Google Scholar 

  27. Sobhani E, Arbabian A, Civalek Ö & Avcar M, Eng. Comput., (2021) https://doi.org/10.1007/s00366-021-01453-0.

    Article  Google Scholar 

  28. Sobhani E, Masoodi AR, Civalek Ö & Avcar M, Eng. Anal. Bound. Elem., 138 (2022) 369. https://doi.org/10.1016/j.enganabound.2022.03.009.

    Article  Google Scholar 

  29. Safaei B, Eur. Phys. J. Plus, 136 (2021) 646. https://doi.org/10.1140/epjp/s13360-021-01632-4.

    Article  Google Scholar 

  30. Safaei B, Onyibo EC & Hurdoganoglu D, Facta Univ. Ser. Mech. Eng., (2022) 1. https://doi.org/10.22190/FUME220201009S.

  31. Safaei B, Steel Compos. Struct., 35 (2020) 659. https://doi.org/10.12989/scs.2020.35.5.659.

  32. Zhao J, Wang J, Sahmani S & Safaei B, Eng. Struct., 262 (2022) 114344. https://doi.org/10.1016/j.engstruct.2022.114344.

    Article  Google Scholar 

  33. Arruda EM, Boyce MC & Jayachandran R, Mech. Mater., 19 (1995) 193. https://doi.org/10.1016/0167-6636(94)00034-E.

    Article  Google Scholar 

  34. Kendall MJ & Siviour CR, J. Dyn. Behav. Mater., 1 (2015) 114. https://doi.org/10.1007/s40870-015-0018-2.

    Article  Google Scholar 

  35. Garg M, Mulliken AD & Boyce MC, Temperature Rise in Polymeric Materials During High Rate Deformation, 75 (2016) 1. https://doi.org/10.1115/1.2745388.

    Article  CAS  Google Scholar 

  36. Johnsen J, Grytten F, Hopperstad OS & Clausen AH, Mech. Mater., 114 (2017) 40. https://doi.org/10.1016/j.mechmat.2017.07.003.

    Article  Google Scholar 

  37. Prasad S, Chouhan H, Kartikeya K, Singh KK & Bhatnagar N, Compos. Struct., 267 (2021) 113800. https://doi.org/10.1016/j.compstruct.2021.113800.

    Article  CAS  Google Scholar 

  38. Ahmed A, Rahman M, Ou Y, Liu S, Mobasher B, Guo S, Zhu D, Constr. Build. Mater., 294 (2021) 123565. https://doi.org/10.1016/j.conbuildmat.2021.123565.

    Article  CAS  Google Scholar 

  39. Shojaei A, Li G, Tan PJ & Fish J, Int. J. Solids Struct., 71 (2015) 262. https://doi.org/10.1016/j.ijsolstr.2015.06.029.

    Article  CAS  Google Scholar 

  40. Millen SLJ & Murphy A, Appl. Compos. Mater., 26 (2019) 1437.

    Article  CAS  Google Scholar 

  41. Chow ZP, Ahmad Z, Wong KJ, Koloor SSR, & Petrů M, Polymers (Basel)., 13 (2021) 492. https://doi.org/10.3390/polym13040492.

    Article  CAS  Google Scholar 

  42. Li DH & Yun ZX, Contin. Mech. Thermodyn., 34 (2022) 341. https://doi.org/10.1007/s00161-021-01073-5.

    Article  Google Scholar 

  43. Wang J, Ma B, Gao J, Liu H, Safaei B, & Sahmani S, Int. J. Appl. Mech., 14 (2022) 01. https://doi.org/10.1142/S1758825121501295.

    Article  Google Scholar 

  44. Chu J, Wang Y, Sahmani S & Safaei B, Int. J. Struct. Stab. Dyn., 22 (2022) 06. https://doi.org/10.1142/S0219455422500687.

    Article  Google Scholar 

  45. Alshenawy R, Safaei B, Sahmani S, Elmoghazy Y, Al-Alwan A, & AlNuwairan M, Eng. Anal. Bound. Elem., 141 (2022) 36. https://doi.org/10.1016/j.enganabound.2022.04.010.

    Article  Google Scholar 

  46. Zuo D, Safaei B, Sahmani S & Ma G, Appl. Math. Mech. English Ed., 43 (2022) 825. https://doi.org/10.1007/s10483-022-2851-7.

    Article  Google Scholar 

  47. Su L, Sahmani S & Safaei B, Eng. Comput., (2022) https://doi.org/10.1007/s00366-022-01606-9.

    Article  Google Scholar 

  48. Dewangan HC, Thakur M, Deepak SSK & Panda SK, Compos. Struct., 279 (2022) 114756. https://doi.org/10.1016/j.compstruct.2021.114756.

    Article  Google Scholar 

  49. Dewangan HC, Sharma N & Panda SK, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., (2022) 095440622210891. https://doi.org/10.1177/09544062221089153.

  50. Dewangan HC, Sharma N & Panda SK, AIAA J., 60 (2022) 985. https://doi.org/10.2514/1.J060643.

    Article  Google Scholar 

  51. Dewangan HC & Panda SK, J. Eng. Mech., 148 (2022) 1. https://doi.org/10.1061/(ASCE)EM.1943-7889.0002129.

    Article  Google Scholar 

  52. Dewangan HC & Panda SK, J. Press. Vessel Technol., 144 (2022) 1. https://doi.org/10.1115/1.4054843.

    Article  CAS  Google Scholar 

  53. Srivastava C, Ravindran B, Lampeas G & Composite W, Eur. Conf. Compos. Mater., 1 (2018) 24.

    Google Scholar 

  54. Yiting W, Dongyun G & Chen L, Int. Conf. Compos. Mater., 5 (2015) 19.

    Google Scholar 

  55. Gieleta R, Gotowicki P & Popławski A, Compos. theory Pract., 2 (2013) 122. https://doi.org/10.1016/j.compstruct.2019.110952.

  56. Ding Y, Wang Y, Zhang HL, Acta Mech. Solida Sin., 32 (2019) 725. https://doi.org/10.1007/s10338-019-00115-5.

    Article  Google Scholar 

  57. Harrigan JJ, Ahonsi B, Palamidi E & Reid SR, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 372 (2014) 20130201. https://doi.org/10.1098/rsta.2013.0201.

  58. Fu H, Lilly E, Tang XR, Li JL, & Tan DW, Rev. Sci. Instrum., 85 (2014) 045120. https://doi.org/10.1063/1.4871955.

    Article  CAS  Google Scholar 

  59. Avinadav C, Ashuach Y & Kreif R, Rev. Sci. Instrum., 82 (2011) 073908. https://doi.org/10.1063/1.3615243.

    Article  CAS  Google Scholar 

  60. Foroutan R, Nemes J, Ghiasi H & Hubert P, Compos. Struct., 106 (2013) 264. https://doi.org/10.1016/j.compstruct.2013.06.014.

    Article  Google Scholar 

  61. Miedzińska D, Gieleta R & Małek E, Mech. Mater., 141 (2020) 103245. https://doi.org/10.1016/j.mechmat.2019.103245.

    Article  Google Scholar 

  62. Hu W, Huang J, Zhang C, Ren T, Guan T, Wu K, Wang B, Aamir RM, Sheikh MZ, & Suo T, Carbon N. Y., 167 (2020) 770. https://doi.org/10.1016/j.carbon.2020.05.067.

    Article  CAS  Google Scholar 

  63. Ali SF & Fan J, J. Mater. Sci. Technol., 57 (2020) 12. https://doi.org/10.1016/j.jmst.2020.05.013.

    Article  Google Scholar 

  64. Zhao Z, Liu P, Dang H, Nie H & Guo Z, Int. J. Impact Eng., 156 (2021) 103928. https://doi.org/10.1016/j.ijimpeng.2021.103928.

    Article  Google Scholar 

  65. Lai D, Demartino C & **ao Y, Constr. Build. Mater., 319 (2022) 125739. https://doi.org/10.1016/j.conbuildmat.2021.125739.

    Article  CAS  Google Scholar 

  66. Fish J, Filonova V & Kuznetsov S, Int. J. Numer. Methods Eng., 91 (2012) 1406. https://doi.org/10.1002/nme.4322.

    Article  Google Scholar 

  67. Liu Y, Van Der Meer FP & Sluys LJ, Comput. Mech., 65 (2019) 79. https://doi.org/10.1007/s00466-019-01753-9.

    Article  Google Scholar 

  68. Karamnejad A & Sluys LJ, Comput. Methods Appl. Mech. Eng., 278 (2014) 423. https://doi.org/10.1016/j.cma.2014.05.020.

    Article  Google Scholar 

  69. Praud F, Chatzigeorgiou G, Bikard J & Meraghni F, Mech. Mater., 114 (2017) 9. https://doi.org/10.1016/j.mechmat.2017.07.001.

    Article  Google Scholar 

  70. Miled B, Doghri I, Brassart L & Delannay L, Int. J. Solids Struct., 50 (2013) 1755. https://doi.org/10.1016/j.ijsolstr.2013.02.004.

    Article  Google Scholar 

  71. He G, Liu Y, Hammi Y & Horstemeyer MF, Mech. Adv. Mater. Struct., 28 (2020) 1775. https://doi.org/10.1080/15376494.2019.1709673.

    Article  CAS  Google Scholar 

  72. Yang BJ, Kim BR & Lee HK, Compos. Struct., 94 (2017) 1420. https://doi.org/10.1016/j.compstruct.2011.11.016.

    Article  Google Scholar 

  73. Liu Y, Meer FP Van Der, Sluys LJ & Fan JT, Compos. Struct., 252 (2020) 112690. https://doi.org/10.1016/j.compstruct.2020.112690.

    Article  Google Scholar 

  74. Vieille B, Albouy W & Taleb L, Compos. Part B, 90 (2016) 278. https://doi.org/10.1016/j.compositesb.2016.01.004.

    Article  CAS  Google Scholar 

  75. Zhang J-T, Shang Y-D, Zhang M, Liu L-S, Zhai P-C, & Li S-X, Cure-dependent viscoelastic analysis on the residual stresses and distortion created in composite corner during curing, in Proceedings of the 2nd Annual International Conference on Advanced Material Engineering (AME 2016), vol. 1 20–27. https://doi.org/10.2991/ame-16.2016.4 (Atlantis Press, 2016).

  76. Bengtsson R AR and GEK, IOP Publ., 942 (2020) 012021. https://doi.org/10.1088/1757-899X/942/1/012021.

  77. Hamillage MY, Leung C & Kwok K, Compos. Struct., 280 (2022) 114901. https://doi.org/10.1016/j.compstruct.2021.114901.

    Article  CAS  Google Scholar 

  78. Luo C & Lua JIM, Fire Saf. Sci. tenth Int. Symp., 10 (2011) 1179. https://doi.org/10.3801/IAF.

    Article  Google Scholar 

  79. Zreid I, Fleischhauer R & Kaliske M, Int. J. Solids Struct., 50 (2013) 4279. https://doi.org/10.1016/j.ijsolstr.2013.08.031.

    Article  CAS  Google Scholar 

  80. Ahmed A & Sluys LJ, Comput. Methods Appl. Mech. Engrg., 278 (2014) 291. https://doi.org/10.1016/j.cma.2014.06.003.

    Article  Google Scholar 

  81. Springer M, Turon A & Pettermann HE, Int. J. Solids Struct., 159 (2019) 257. https://doi.org/10.1016/j.ijsolstr.2018.10.004.

    Article  Google Scholar 

  82. Saeedi M & Lopez-crespo P, Mater. Des. Process Commun., 2 (2020) 1. https://doi.org/10.1002/mdp2.198.

    Article  Google Scholar 

  83. Musto M & Alfano G, Comput. Struct., 118 (2013) 126. https://doi.org/10.1016/j.compstruc.2012.12.020.

    Article  Google Scholar 

  84. Lu Z & Xu Q, Compos. Sci. Technol., 74 (2013) 173. https://doi.org/10.1016/j.compscitech.2012.11.009.

    Article  Google Scholar 

  85. Morin D, Bourel B, Bennani B, Lauro F & Lesueur D, Int. J. Impact Eng., 53 (2013) 94. https://doi.org/10.1016/j.ijimpeng.2012.02.003.

    Article  Google Scholar 

  86. May M, Compos. Struct., 133 (2015) 16–21. https://doi.org/10.1016/j.compstruct.2015.07.032

    Article  Google Scholar 

  87. Liu PF, Peng XQ & Guo ZY, Theor. Appl. Fract. Mech., 103 (2019) 102263. https://doi.org/10.1016/j.tafmec.2019.102263.

    Article  Google Scholar 

  88. Wang K, Zhao L, Hong H & Zhang J, Compos. Struct., 201 (2018) 995. https://doi.org/10.1016/j.compstruct.2018.06.046.

    Article  Google Scholar 

  89. Ekhtiyari A & Shokrieh MM, Compos. Struct., 281 (2022) 114962. https://doi.org/10.1016/j.compstruct.2021.114962.

    Article  CAS  Google Scholar 

  90. Gu T & Wang Z, Eng. Fract. Mech., 259 (2022) 108145. https://doi.org/10.1016/j.engfracmech.2021.108145.

    Article  Google Scholar 

  91. Fitoussi J, Bocquet M & Meraghni F, Compos. Part B, 45 (2013) 1181. https://doi.org/10.1016/j.compositesb.2012.06.011.

    Article  CAS  Google Scholar 

  92. Fletcher L & Pierron F, EPJ Web Conf., 183 (2018) 02042. https://doi.org/10.1051/epjconf/201818302042.

    Article  CAS  Google Scholar 

  93. Yang K, Yang X, Liu E, Shi C, Ma L, He C, Li Q, Li J, & Zhao N, Mater. Sci. Eng. A, 729 (2018) 487. https://doi.org/10.1016/j.msea.2017.09.011.

    Article  CAS  Google Scholar 

  94. Aiman S, Abu H, Ahmad R & Akil H, Compos. Part B, 163 (2019) 403. https://doi.org/10.1016/j.compositesb.2019.01.037.

    Article  CAS  Google Scholar 

  95. Massaq A, Rusinek A, Klosak M, Bahi S & Arias A, Compos. Struct., 214 (2019) 114. https://doi.org/10.1016/j.compstruct.2019.01.101.

    Article  Google Scholar 

  96. Chouhan H, Bhalla NA & Bhatnagar N, Mater. Today Commun., 26 (2021) 101709. https://doi.org/10.1016/j.mtcomm.2020.101709.

    Article  CAS  Google Scholar 

  97. Elmahdy A & Verleysen P, Mater. Today Proc., 34 (2021) 171. https://doi.org/10.1016/j.matpr.2020.02.284.

    Article  CAS  Google Scholar 

  98. Elmahdy A & Verleysen P, Polym. Test., 81 (2020) 106224. https://doi.org/10.1016/j.polymertesting.2019.106224.

    Article  CAS  Google Scholar 

  99. Bandaru AK, Chouhan H & Bhatnagar N, Polym. Test., 84 (2020) 106407. https://doi.org/10.1016/j.polymertesting.2020.106407.

    Article  CAS  Google Scholar 

  100. Shi C, Guo B, Sarıkaya M, Çelik M, Chen P, Güden M, Int. J. Impact Eng., 149 (2021) 103771. https://doi.org/10.1016/j.ijimpeng.2020.103771.

    Article  Google Scholar 

  101. Zhao J, Guo L, Zhang L, Wang X, Tang Y, & Li Z, Compos. Part B, 220 (2021) 108993. https://doi.org/10.1016/j.compositesb.2021.108993.

    Article  CAS  Google Scholar 

  102. **ong Z, Wei W, He S, Liu F, Luo H, & Li L, Constr. Build. Mater., 276 (2021) 122195. https://doi.org/10.1016/j.conbuildmat.2020.122195.

    Article  CAS  Google Scholar 

  103. Chouhan H, Bhalla NA, Bandaru AK, Gebremeskel SA & Bhatnagar N, Polym. Test., 93 (2021) 106964. https://doi.org/10.1016/j.polymertesting.2020.106964.

    Article  CAS  Google Scholar 

  104. Cui J, Wang S, Wang S, Li G, Wang P, & Liang C, Polymers (Basel)., 11 (2019) 2019. https://doi.org/10.3390/polym11122019.

    Article  CAS  Google Scholar 

  105. Wang K, **e X, Wang J, Zhao A, Peng Y, & Rao Y, Results Phys., 18 (2020) 103346. https://doi.org/10.1016/j.rinp.2020.103346.

    Article  Google Scholar 

  106. Wang S, Yao Y, Tang C, Li G & Cui J, Compos. Part B, 218 (2021) 108933. https://doi.org/10.1016/j.compositesb.2021.108933.

    Article  CAS  Google Scholar 

  107. Weng F, Fang Y, Ren M, Sun J & Feng L, Compos. Sci. Technol., 203 (2021) 108599. https://doi.org/10.1016/j.compscitech.2020.108599.

    Article  CAS  Google Scholar 

  108. Wei Y, Tian M, Huang C, Wang S & Li X, Def. Technol., (2022) https://doi.org/10.1016/j.dt.2022.03.011.

    Article  Google Scholar 

  109. Shokrieh MM & Omidi MJ, Compos. Struct., 88 (2009) 595. https://doi.org/10.1016/j.compstruct.2008.06.012.

    Article  Google Scholar 

  110. Tasdemirci A, Kara A, Turan AK, Tunusoglu G, Guden M, Hall IW, Procedia Eng., 10 (2011) 3068. https://doi.org/10.1016/j.proeng.2011.04.508.

    Article  CAS  Google Scholar 

  111. Al-zubaidy H, Zhao X & Al-mahaidi R, Compos. Struct., 96 (2013) 153. https://doi.org/10.1016/j.compstruct.2012.09.032.

    Article  Google Scholar 

  112. Kenji N & Takashi Y, EPJ Web Conf., 01039 (2015) 01039. https://doi.org/10.1051/epjconf/20159401039.

    Article  Google Scholar 

  113. Daryadel SS, Ray C, Pandya T & Mantena PR, Mater. Sci. Appl., 6 (2015) 511. https://doi.org/10.4236/msa.2015.66054.

    Article  Google Scholar 

  114. Zhang H, Yao Y, Zhu D, Mobasher B & Huang L, Polym. Test., 51 (2016) 29. https://doi.org/10.1016/j.polymertesting.2016.02.006.

    Article  CAS  Google Scholar 

  115. Gurusideswar S. , Velmurugan R. GNK, Int. J. Impact Eng., 000 (2017) 1. https://doi.org/10.1016/j.ijimpeng.2017.05.013.

    Article  Google Scholar 

  116. Powell LA, Luecke WE, Merzkirch M, Avery K & Foecke T, SAE Int., 10 (2018) 138. https://doi.org/10.4271/2017-01-0230.

    Article  Google Scholar 

  117. Lee S & Hwang J, Nanotechnol. Rev., 8 (2019) 444. https://doi.org/10.1515/ntrev-2019-0039.

    Article  CAS  Google Scholar 

  118. Naresh K, Shankar K, Rao BS & Velmurugan R, Compos. Part B, 100 (2016) 125. https://doi.org/10.1016/j.compositesb.2016.06.007.

    Article  CAS  Google Scholar 

  119. Naresh K, Shankar K, Velmurugan R & Gupta NK, Thin Walled Struct., 126 (2018) 150. https://doi.org/10.1016/j.tws.2016.12.021.

    Article  Google Scholar 

  120. Fernando L et al., Compos. Struct., 1 (2018) 455. https://doi.org/10.1016/j.compstruct.2018.06.040.

    Article  Google Scholar 

  121. Ou Y & Zhu D, Constr. Build. Mater., 96 (2015) 648. https://doi.org/10.1016/j.conbuildmat.2015.08.044.

    Article  Google Scholar 

  122. Ou Y et al., Compos. Part B, 95 (2016) 123. https://doi.org/10.1016/j.compositesb.2016.03.085.

    Article  CAS  Google Scholar 

  123. Zhang X, Zhu D, Yao Y, Zhang H & Mobasher B, J. Struct. Integr. Maint., 1 (2016) 22. https://doi.org/10.1080/24705314.2016.1153327.

    Article  Google Scholar 

  124. Xu X, Rawat P, Shi Y & Zhu D, Compos. Part B, 177 (2019) 107442. https://doi.org/10.1016/j.compositesb.2019.107442.

    Article  CAS  Google Scholar 

  125. Ou Y, Zhu D & Li H, J. Mater. Civ. Eng., 28 (2016) 1. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001615.

    Article  Google Scholar 

  126. Elanchezhian C, Ramnath BV & Hemalatha J, Procedia Mater. Sci., 6 (2014) 1405. https://doi.org/10.1016/j.mspro.2014.07.120.

    Article  CAS  Google Scholar 

  127. Sekher C, Sumant C, Kumar R & Ray C, Int. J. Impact Eng., 167 (2022) 104262. https://doi.org/10.1016/j.ijimpeng.2022.104262.

    Article  Google Scholar 

  128. Chen Z et al., Compos. Struct., 279 (2022) 114826. https://doi.org/10.1016/j.compstruct.2021.114826.

    Article  Google Scholar 

  129. Hosur M V, Alexander J, Vaidya UK & Jeelani S, Compos. Struct., 52 (2001) 405.

    Article  Google Scholar 

  130. Liu T, Sun B & Gu B, Polym. Test., 64 (2017) 55. https://doi.org/10.1016/j.polymertesting.2017.09.035.

    Article  CAS  Google Scholar 

  131. Tag X, Dx Y & X PDX, Int. J. Impact Eng., 107 (2017) 1. https://doi.org/10.1016/j.ijimpeng.2017.05.003.

    Article  Google Scholar 

  132. Shi C, Guo B, Chen P, Guo B & Chen P, Int. J. Impact Eng. Receiv., 149 (2020) 103771. https://doi.org/10.1016/j.ijimpeng.2020.103771.

    Article  Google Scholar 

  133. Lee S, Ramos K & Matouš K, Mech. Mater., 160 (2021) https://doi.org/10.1016/j.mechmat.2021.103944.

    Article  Google Scholar 

  134. Trochez A, Jamora VC, Larson R, Wu KC, Ghosh D KO, J. Compos. Mater., 55 (2021) 4549. https://doi.org/https://doi.org/10.1177/00219983211042073.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Kumar Panda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Kumar, E.K., Dewangan, H.C. et al. Strain Rate Loading Effects on Fiber-Reinforced Polymeric Composites with and Without Damage: A Comprehensive Review. Trans Indian Inst Met 76, 1–10 (2023). https://doi.org/10.1007/s12666-022-02728-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02728-w

Keywords

Navigation