Log in

Effect of H2O2 and Ethylene Glycol on Molybdenite Dissolution in H2SO4 Solution

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The leaching behavior of molybdenite was investigated in H2O2–H2SO4 solution in this paper. The results show that H2O2 was an effective oxidant for molybdenite leaching, but it had fast decomposition kinetics. A final molybdenum extraction of 73.0% was obtained under the experimental conditions of 0.5 mol/L H2SO4, 0.5 mol/L H2O2, and the fresh H2O2 addition enhanced molybdenum extraction from 73.0 to 94.5%. The leaching process was controlled by a mixture of surface reactions and diffusion, and the activation energy was 27.98 kJ/mol. Ethylene glycol enhanced molybdenum extraction and improved the stability of H2O2. Electrochemical studies suggested that the decomposition kinetics of H2O2 was faster than that of molybdenite oxidation, and ethylene glycol enhanced recovery by increasing the resistance of H2O2 decomposition and decreasing the resistance of molybdenite oxidation. XRD and XPS analysis confirmed that ethylene glycol did not alter the phase composition and the surface chemical statues of molybdenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li X B, Wu T, Zhou Q S, Qi T G, Peng Z H, and Liu G H, Trans Nonferr Met Soc China 31 (2021) 842.

    Article  CAS  Google Scholar 

  2. Zeng Q D, Liu J M, Qin K Z, Fan H R, Chu S X, Wang Y B, and Zhou L L, Int Geol Rev 55 (2013) 1311.

    Article  Google Scholar 

  3. Chen M L, Zhang L, Gu G H, Hu Y H, and Su L J, Trans Nonferr Met Soc China 18 (2007) 1421.

    Article  Google Scholar 

  4. Khoshnevisan A, Yoozbashizadeh H, Mozammel M, and Sadrnezhaad S K, Hydrometallurgy 111 (2012) 52.

    Article  Google Scholar 

  5. Wu B L, and Zhao Z W, Rare Metals Cem Carbides 32 (2004) 1.

    CAS  Google Scholar 

  6. Yu J, Yang H Y, Tong L L, and Zhu J, Redk Met 34 (2015) 207.

    CAS  Google Scholar 

  7. Aracena A, Sanino A, and Jerez O, Trans Nonferr Met Soc China 28 (2018) 177.

    Article  CAS  Google Scholar 

  8. Vizsolyi A, and Peters E, Hydrometallurgy 6 (1980) 103.

    Article  CAS  Google Scholar 

  9. Cao Z F, Zhong H, Qiu Z H, Liu G Y, and Zhang W X, Hydrometallurgy 99 (2009) 2.

    Article  CAS  Google Scholar 

  10. Cao Z F, Zhong H, Jiang T, Wang S, Liu G Y, and **a L Y, J Chem Technol Biotechnol 87 (2012) 938.

    Article  CAS  Google Scholar 

  11. Cao Z F, Zhong H, Liu G Y, Qiu Y R, and Wang S, J Taiwan Inst Chem Eng 41 (2010) 338.

    Article  CAS  Google Scholar 

  12. Smirnov K M, Raspopov N A, Shneerson Y M, Lapin A Y, Bitkov G A, Men’shikov Y A, Paskin P N, and Kirichenko V P, Russ Metall (2010) 588.

  13. Goodarzi M M, Rezai B, and Seifikhani A, Iran J Chem Chem Eng 33 (2014) 73.

    CAS  Google Scholar 

  14. Harris D L, and Lottermoser B G, Appl Geochem 21 (2006) 1216.

    Article  CAS  Google Scholar 

  15. Aydogan S, Ucar G, Canbazoglu M, Hydrometallurgy 81 (2006) 45.

    Article  CAS  Google Scholar 

  16. Hirajima T, Miki H, Suyantara G P W, Matsuoka H, Elmahby A M, Sasaki K, Imaizumi Y, and Kuroiwa S, Miner Eng 100 (2017) 83.

    Article  CAS  Google Scholar 

  17. Olubami P A, Borode J O, and Ndlovu S, J South Afr Inst Min Metall 106 (2006) 765.

    CAS  Google Scholar 

  18. Huang H H, Lu M C, and Chen J N, Water Res 35 (2001) 2291.

    Article  CAS  Google Scholar 

  19. Zeineb O, Hedi B A, Jeday M R, and Cheker C, Int J Hydrogen Energy, 40 (2015) 1278.

    Article  CAS  Google Scholar 

  20. Mahajan V, Misra M, Zhong K, and Fuerstenau, M C, Miner Eng, 20 (2007) 670

    Article  CAS  Google Scholar 

  21. Ginath S, Lurie S, Golan A, Amsterdam A, Sandbank J, Sadan O, and Kovo M, Water Res, 35 (2001) 2129

    Article  Google Scholar 

  22. Veloso T C, Peixoto J J M, Pereira M S, and Leao V A, Int J Miner Process, 48 (2016) 147.

    Article  Google Scholar 

  23. Ghahremaninezhad A, Asselin E, and Dixon D G, Electrochim Acta, 55 (2010) 5041

    Article  CAS  Google Scholar 

  24. Kartal M, **a F, Ralph D, Rickard W D A, Renard F, and Li W, Hydrometallurgy, 191 (2020) 105192.

    Article  CAS  Google Scholar 

  25. Ghahremaninezhad A, Dixon D G, and Asselin E, Electrochim Acta, 87 (2013) 97.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [No. 51574072 and No. 51434001] and the Fundamental Research Funds for the Central Universities [No. 2025028].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Feng **e.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Wang, W., **e, F. et al. Effect of H2O2 and Ethylene Glycol on Molybdenite Dissolution in H2SO4 Solution. Trans Indian Inst Met 76, 39–47 (2023). https://doi.org/10.1007/s12666-022-02702-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02702-6

Keywords

Navigation