Log in

Slurry Erosion Behaviour of Low-Temperature Liquid Nitrided 16Cr5Ni Martensitic Stainless Steel

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Hydroturbine blades experience erosive wear during operations due to the presence of silt particles. The hydroturbine blades are fabricated from 16Cr5Ni martensitic stainless steels (16/5MSS). In order to mitigate the erosive wear of blades, heat-treated 16/5MSS (16/5HTT) were liquid nitrided at low temperature of 450 °C (16/5M450) and 500 °C (16/5M500) for 10 h in separate batch process. The cumulative weight loss after slurry erosion test of 16/5M450 is found to be 73% less than that of 16/5HTT, whereas the cumulative weight loss of 16/5M500 is found to be 6.7% more than that of 16/5HTT. The enhanced resistance to slurry erosion of 16/5M450 is attributed to high hardness of expanded martensite (αN-Fe) in the nitrided layer. αN-Fe is formed by diffusion of N in the nitrided 16/5HTT. When nitriding is done at 500 °C, then there is a reduction in resistance to the slurry erosion resistance which is caused by the CrN phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Syamsundar C, Chatterjee D, and Kamaraj M, Trans Indian Inst Met 68 (2015) 587.

    Article  Google Scholar 

  2. Kumar R K, Seetharamu S, and Kamaraj M, Wear 320 (2014) 16.

    Article  CAS  Google Scholar 

  3. Kishor B, Chaudhari G P, and Nath S K, Tribol Int 119 (2018) 411.

    Article  CAS  Google Scholar 

  4. Qin B, Wang Z Y, and Sun Q S, Mater Char 59 (2008) 1096.

    Article  CAS  Google Scholar 

  5. Agarwal N, Chaudhari G P, and Nath SK, Tribol Int 70 (2014) 18.

    Article  CAS  Google Scholar 

  6. Goyal D K, Singh H, Kumar H, and Sahni V, Wear 289 (2012) 46.

    Article  Google Scholar 

  7. Rajahram S S, Harvey, T J, and Wood R J K. Tribol Int 44 (2011) 232.

    Article  CAS  Google Scholar 

  8. Chauhan A K, Goel D B, and Prakash S, J Alloys Compd 467 (2009) 459.

    Article  CAS  Google Scholar 

  9. Kumar R E, Kamaraj M, and Seetharamu S S A K S, Mater Des 132 (2017) 79.

    Article  CAS  Google Scholar 

  10. Basha S S, Periasamy V M, Kamaraj M, and Shariff S M, J Mater Eng Per 22 (2013) 3689.

    Article  CAS  Google Scholar 

  11. Tsai W, Humphrey J A C, Cornet I, and Levy A V, Wear 68 (1981) 289.

    Article  CAS  Google Scholar 

  12. Clark M, Wear 162164 (1993) 669.

    Article  Google Scholar 

  13. Gupta R, Singh S N, and Sehadri V, Wear 184 (1995) 169.

    Article  CAS  Google Scholar 

  14. Desale G R, Gandhi B K, and Jain S C, Wear 259 (2005) 196.

    Article  CAS  Google Scholar 

  15. Gadhikar A A, Sharma A, Goel D B, and Sharma C P, Trans Ind Inst Met 64 (2011) 493.

    Article  CAS  Google Scholar 

  16. Javaheri V, Porter D, and Kuokkala V, Wear 408409 (2018) 248.

    Article  Google Scholar 

  17. Zhou Z, Dai M, Shen Z, and Hu J, J Alloys Compd 623 (2015) 261.

    Article  CAS  Google Scholar 

  18. Pye D, Practical Nitriding and Ferritic Nitrocarburizing. ASM International Materials Park, Ohio (2003).

    Book  Google Scholar 

  19. Kosmac A, Surface Hardening of Stainless Steel. Materials and Application Series 20. Euro Inox, Brussels (2015).

    Google Scholar 

  20. Davis J R, Surface Hardening of Steels: Understanding the Basics. ASM International, Ohio (2002).

    Google Scholar 

  21. Funatani K, Met Sci Heat Treat 46 (2004) 277.

    Article  CAS  Google Scholar 

  22. Luo H S, and Zhao C, Phys Procedia 50 (2013) 38.

    Article  CAS  Google Scholar 

  23. Wang J, Lin Y, Yan J, Zen D, Zhang Q, Huang R and Fan H, Surface Coat Technol 206 (2012) 3399.

    Article  CAS  Google Scholar 

  24. Easterday J R, Pilznienski J F. Low Temperature Nitriding Salt and Method of Use, Patent No. US 6,746,546 B2, June 2004.

  25. Shih T S, Huang Y S, and Chen C F, Appl Surface Sci 258 (2011) 81.

    Article  CAS  Google Scholar 

  26. Huang R, Wang J, Zhong S, Li M, **ong J, and Fan H, Appl Surface Sci 271 (2013) 93.

    Article  CAS  Google Scholar 

  27. Li G J, Peng Q, Wang J, Li C, Wang Y, Gao J, Chen S Y, and Shen B L, Surface Coat Technol 202 (2008) 2865.

    Article  CAS  Google Scholar 

  28. Li G J, Peng Q, Li C, Wang Y, Gao J, Chen S, Wang J, and Shen B, Mater Char 59 (2007) 1359.

    Article  Google Scholar 

  29. Prakash G, and Nath S K, J Mater Eng and Per 27 (2018) 3206.

    Article  CAS  Google Scholar 

  30. Oliver W C, and Pharr G M, J Mater Res 7 (1992) 1564.

    Article  CAS  Google Scholar 

  31. Hull F C, Suppl Weld J 52 (1973) 193.

    Google Scholar 

  32. Xu Y, **g H, Xu L, Han Y, and Zhao L, J Mat Res Tech 1029 (2019) 1.

    Google Scholar 

  33. Zhou X, Liu Y, Qiao Z, Guo Q, Liu C, and Yu L, et al., Fusion Eng Des 9584 (2017) 1.

    Google Scholar 

  34. Li J, Cheng L, Zhang P, Wang L, and Li H, J Mat Res Tech 8 (2019)1781.

    Article  CAS  Google Scholar 

  35. Nakajima M, Nakamura Y, Suzuki K, Bai Y, and Uematsu Y, Int J Fatigue 68 (2014) 103.

    Article  CAS  Google Scholar 

  36. Somers M A J, Comp Mat Process12 (2014) 413.

  37. Wang J, Lin Y, Yan J, Zeng D, Huang R, and Hu Z, ISIJ Int 52 (2012) 1118.

    Article  CAS  Google Scholar 

  38. Allenstein A N, Lepienski C M, Buschinelli A J A, and Brunatto S F. Wear 309 (2014) 159.

    Article  CAS  Google Scholar 

  39. Allenstein A N, Lepienski C M, Buschinelli A J A, and Brunatto SF, Appl Surface Sci 277 (2013) 15.

    Article  CAS  Google Scholar 

  40. Kim S K, Yoo J S, Priest J M, and Fewell M P, Surface Coat Technol 163 (2003) 380.

    Article  Google Scholar 

  41. Grewal H S, Agrawal A, and Singh H, Tribol Lett 52 (2013) 287.

    Article  Google Scholar 

  42. Levy A V, Wear 108 (1986) 1.

    Article  CAS  Google Scholar 

  43. Levy A, Aghazadeh M, and Hickey G, Wear 108 (1986) 23.

    Article  CAS  Google Scholar 

  44. O’Flynn, D J, Bingley M S, Bradley M S A, and Burnett A J, Wear 248 (2001) 162.

    Article  Google Scholar 

  45. Manisekaran T, Kamaraj M, Sharrif S M, and Joshi S V. J Mater Eng and Per 16 (2007) 567.

    Article  CAS  Google Scholar 

  46. Hutchings I M, Wear by Hard Particles, Tribology: Friction and Wear of Materials, Arnold (London), Arnold a Member of Hodder Headline group (1995).

    Google Scholar 

  47. Wheeler D W, and Wood R J K, Wear 258 (2005) 526.

    Article  CAS  Google Scholar 

  48. Pinedo C E, and Monteiro W A, Surface Coat Technol 179 (2004) 119.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the staffs of Indian Institute of Technology Roorkee, India, for their assistance in conducting the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guru Prakash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, G., Nath, S.K. Slurry Erosion Behaviour of Low-Temperature Liquid Nitrided 16Cr5Ni Martensitic Stainless Steel. Trans Indian Inst Met 74, 521–530 (2021). https://doi.org/10.1007/s12666-020-02133-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02133-1

Keywords

Navigation