Log in

Estimating tidal inundation in the aftermath of the 2018 Palu earthquake

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Disasters broadly impact livelihood and the environment. Interrelated disasters cause significant casualties and loss because each type of disaster contributes to a series of impacts. An example of multiple disaster events in Indonesia is the 2018 Palu earthquake. This earthquake triggered tsunami, liquefaction, and rupture. Many studies on this earthquake only focused on either earthquake, tsunami, or liquefaction without conducting further impact analysis of a combined hazard. This study aimed to estimate tidal inundation in Palu City based on the deformation rate related to the earthquake and sea level rise. Synthetic Aperture Radar (SAR) data were processed with Parallel Small Baseline Subset Interferometry (P-SBAS) to produce a deformation rate using the Geohazard Exploitation Platform (GEP). This rate was then combined with DEMNAS data and modelled sea level to determine the spatial distribution of potential tidal inundation. The results indicated that when the Palu-Koro fault remains active, this activity could generate a tidal flood in 2050 and 2100. Flood prediction scenarios suggested that the impact covers central Palu, i.e., Palu Barat and Palu Timur districts, which is almost one-fifth of the research area. Mitigation has taken place through the construction of coastal dikes, except in a few areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  • Aksha SK, Resler LM, Juran LWC Jr (2020) A geospatial analysis of multi-hazard risk in Dharan. Nepal Geomatics Nat Hazards Risk 11:88–111. https://doi.org/10.1080/19475705.2019.1710580

    Article  Google Scholar 

  • Andreas H, Abidin HZ, Sarsito DA, Pradipta D (2018) Adaptation of ‘early climate change disaster’ to the northern coast of Java Island Indonesia. Eng J 22:207–219. https://doi.org/10.4186/ej.2018.22.3.207

    Article  Google Scholar 

  • Arias P, Bellouin N, Coppola E, Jones R, Krinner G, Marotzke J, Naik V, Palmer M, Plattner GK, Rogelj J (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group14 I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary.

  • Azevedo de Almeida B, Mostafavi A (2016) Resilience of infrastructure systems to sea-level rise in coastal areas: Impacts, adaptation measures, and implementation challenges. Sustainability 8:1115

    Article  Google Scholar 

  • Bayik C (2021) Deformation analysis of 2020 mw 5.7 Karlıova, Turkey, earthquake using DInSAR method with different incidence angle SAR data. Arab J Geosci 14:1–12. https://doi.org/10.1007/s12517-021-06670-x

    Article  Google Scholar 

  • Berardino P, Casu F, Fornaro G, Lanari R, Manunta M, Manzo M, Sansosti E (2004) A quantitative analysis of the SBAS algorithm performance. Int Geosci Remote Sens Symp 5:3321–3324. https://doi.org/10.1109/igarss.2004.1370414

    Article  Google Scholar 

  • Biswas K, Chakravarty D, Mitra P, Misra A (2017) Spatial-Correlation Based Persistent Scatterer Interferometric Study for Ground Deformation. J Ind Soc Remote Sens 45:913–926. https://doi.org/10.1007/s12524-016-0647-5

    Article  Google Scholar 

  • Boettke P, Chamlee-Wright E, Gordon P, Ikeda S, Leeson PT, Sobel R (2007) The political, economic, and social aspects of Katrina. South Econ J 74:363–376

    Article  Google Scholar 

  • Bradley K, Mallick R, Andikagumi H, Hubbard J, Meilianda E, Switzer A, Du N, Brocard G, Alfian D, Benazir B, Feng G, Yun S-H, Majewski J, Wei S, Hill EM (2019) Earthquake-triggered 2018 Palu Valley landslides enabled by wet rice cultivation. Nat Geosci 12:935–939. https://doi.org/10.1038/s41561-019-0444-1

    Article  Google Scholar 

  • Caló F, Notti D, Galve JP, Abdikan S, Görüm T, Pepe A, Şanli FB (2017) DInSAR-based detection of land subsidence and correlation with groundwater depletion in konya plain. Turkey Remote Sens 9:83. https://doi.org/10.3390/rs9010083

    Article  Google Scholar 

  • Casu F, Elefante S, Imperatore P, Zinno I, Manunta M, De Luca C, Lanari R (2014) SBAS-DInSAR parallel processing for deformation time-series computation. IEEE J Sel Top Appl Earth Obs Remote Sens 7:3285–3296. https://doi.org/10.1109/JSTARS.2014.2322671

    Article  Google Scholar 

  • Chaussard E, Amelung F, Abidin H, Hong S-H (2013) Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens Environ 128:150–161. https://doi.org/10.1016/j.rse.2012.10.015

    Article  Google Scholar 

  • Cigna F, Ramírez RE, Tapete D (2021) Accuracy of Sentinel-1 PSI and SBAS InSAR Displacement Velocities against GNSS and Geodetic Leveling Monitoring Data. Remote Sens 13:4800. https://doi.org/10.3390/RS13234800

    Article  Google Scholar 

  • Cigna F, Tapete D (2021) Sentinel-1 Big Data Processing with P-SBAS InSAR in the Geohazards Exploitation Platform: An Experiment on Coastal Land Subsidence and Landslides in Italy. Remote Sens 13:885. https://doi.org/10.3390/RS13050885

    Article  Google Scholar 

  • Cipta A, Robiana R, Griffin JD, Horspool N, Hidayati S, Cummins P (2017) A probabilistic seismic hazard assessment for Sulawesi, Indonesia. Geol Soc Spec Pub 441:133–152. https://doi.org/10.1144/SP441.6

    Article  Google Scholar 

  • Cuenca MC (2013) Improving radar interferometry for monitoring fault-related surface deformation, Delft

  • De Luca C, Bonano M, Casu F, Fusco A, Lanari R, Manunta M, Manzo M, Pepe A, Zinno I (2016) Automatic and Systematic Sentinel-1 SBAS-DInSAR Processing Chain for Deformation Time-series Generation. Procedia Computer Science 100:1176–1180. https://doi.org/10.1016/j.procs.2016.09.275

    Article  Google Scholar 

  • de Luca C, Cuccu R, Elefante S, Zinno I, Manunta M, Casola V, Rivolta G, Lanari R, Casu F (2015) An on-demand web tool for the unsupervised retrieval of earth’s surface deformation from SAR data: The P-SBAS service within the ESA G-POD environment. Remote Sens 7:15630–15650. https://doi.org/10.3390/rs71115630

    Article  Google Scholar 

  • De Risi R, Goda K (2016) Probabilistic earthquake–Tsunami multi-hazard analysis: Application to the tohoku region, Japan. Front Built Environ 2. doi:https://doi.org/10.3389/fbuil.2016.00025

  • Duan W, Zhang H, Wang C, Tang Y (2020) Multi-Temporal InSAR Parallel Processing for Sentinel-1 Large-Scale Surface Deformation Map**. Remote Sens 12:3749. https://doi.org/10.3390/RS12223749

    Article  Google Scholar 

  • Fang J, Xu C, Wen Y, Wang S, Xu G, Zhao Y, Yi L (2019) The 2018 Mw 7.5 Palu earthquake: A supershear rupture event constrained by InSAR and broadband regional seismograms. Remote Sens 11. doi:https://doi.org/10.3390/rs11111330

  • Gusman AR, Supendi P, Nugraha AD, Power W, Latief H, Sunendar H, Widiyantoro S, Daryono WSH, Hakim A, Muhari A, Wang X, Burbidge D, Palgunadi K, Hamling I, Daryono MR (2019) Source Model for the Tsunami Inside Palu Bay Following the 2018 Palu Earthquake, Indonesia. Geophys Res Lett 46:8721–8730. https://doi.org/10.1029/2019GL082717

    Article  Google Scholar 

  • Hidayat RF, Kiyota T, Tada N, Hayakawa J, Nawir H (2020) Reconnaissance on liquefaction-induced flow failure caused by the 2018 Mw 7.5 sulawesi earthquake, palu. Indonesia J Eng Tech Sci 52:51–65. https://doi.org/10.5614/j.eng.technol.sci.2020.52.1.4

    Article  Google Scholar 

  • Hilley GE, Bürgmann R, Ferretti A, Novali F, Rocca F (2004) Dynamics of slow-moving landslides from permanent scatterer analysis. Science 304:1952–1955. https://doi.org/10.1126/science.1098821

    Article  Google Scholar 

  • Holzner J, Bamler R (2002) Burst-mode and scanSAR interferometry. IEEE Trans Geosci Remote Sens 40:1917–1934. https://doi.org/10.1109/TGRS.2002.803848

    Article  Google Scholar 

  • Hooper AJ (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35. doi:https://doi.org/10.1029/2008GL034654

  • Hossain KMA, Easa SM, Lachemi M (2009) Evaluation of the effect of marine salts on urban built infrastructure. Build Environ 44:713–722

    Article  Google Scholar 

  • Iswari MY, Anggraini K (2018) Demnas: Model Digital Ketinggian Nasional Untuk Aplikasi Kepesisiran. Oseana 43. doi:https://doi.org/10.14203/oseana.2018.vol.43no.4.2

  • Jalil A, Fathani TF, Satyarno I, Wilopo W (2021) Liquefaction in Palu: the cause of massive mudflows. Geoenvironmental Disasters 8. doi:https://doi.org/10.1186/s40677-021-00194-y

  • Jaya A, Nishikawa O, Jumadil S (2019) Distribution and morphology of the surface ruptures of the 2018 Donggala-Palu earthquake, Central Sulawesi, Indonesia. Earth, Planets and Space 71:1–13. https://doi.org/10.1186/s40623-019-1126-3

    Article  Google Scholar 

  • Johnson K, Depietri Y, Breil M (2016) Multi-hazard risk assessment of two Hong Kong districts. International Journal of Disaster Risk Reduction 19:311–323. https://doi.org/10.1016/J.IJDRR.2016.08.023

    Article  Google Scholar 

  • Kampes BM (2006) Radar interferometry: Persistent scatterer technique. Springer, The Netherlands

    Google Scholar 

  • Kappes MS, Keiler M, von Elverfeldt K, Glade T (2012) Challenges of analyzing multi-hazard risk: A review. Nat Hazards 64:1925–1958. https://doi.org/10.1007/s11069-012-0294-2

    Article  Google Scholar 

  • Keys A, Masterman-Smith H, Cottle D (2006) The political economy of a natural disaster: The Boxing Day tsunami, 2004. Antipode 38:195–204

    Article  Google Scholar 

  • Liu C, Shi Y (2021) Space-Time Stress Variations on the Palu-Koro Fault Impacting the 2018 Mw 7.5 Palu Earthquake and Its Seismic Hazards. Geochemistry, Geophysics, Geosystems 22:e2020GC009552. doi:https://doi.org/10.1029/2020GC009552

  • Loc HH, Lixian ML, Park E, Dung TD, Shrestha S, Yoon Y-J (2021) How the saline water intrusion has reshaped the agricultural landscape of the Vietnamese Mekong Delta, a review. Sci Total Environ 794:148651

    Article  Google Scholar 

  • Manunta M, De Luca C, Zinno I, Casu F, Manzo M, Bonano M, Fusco A, Pepe A, Onorato G, Berardino P et al (2019) The Parallel SBAS Approach for Sentinel-1 Interferometric Wide Swath Deformation Time-Series Generation: Algorithm Description and Products Quality Assessment. IEEE Trans Geosci Remote Sens 57:6229–6281. https://doi.org/10.1109/TGRS.2019.2904912

    Article  Google Scholar 

  • Marfai MA (2003) GIS Modelling of River and Tidal Flood Hazards in a Waterfront City Case Study: Semarang City, Central Java, Indonesia.

  • Marfai MA (2014) Impact of sea level rise to coastal ecology: A case study on the northern part of java island, indonesia. Quaest Geogr 33:107–114. https://doi.org/10.2478/quageo-2014-0008

    Article  Google Scholar 

  • Marfai MA, King L (2008) Tidal inundation map** under enhanced land subsidence in Semarang, Central Java Indonesia. Nat Hazards 44:93–109. https://doi.org/10.1007/s11069-007-9144-z

    Article  Google Scholar 

  • Marjiyono KH, Soehaimi A (2013) Struktur Geologi Bawah Permukaan Dangkal Berdasarkan Interpretasi Data Geolistrik, Studi Kasus Sesar Palu Koro. Jurnal Geologi Dan Sumberdaya Mineral 23:39–45

    Google Scholar 

  • Muhari A, Imamura F, Arikawa T, Hakim AR, Afriyanto B (2018) Solving the Puzzle of the September 2018 Palu, Indonesia, Tsunami Mystery: Clues from the Tsunami Waveform and the Initial Field Survey Data Sediment. J Disaster Res 13:1–3. https://doi.org/10.20965/jdr.2018.sc20181108

    Article  Google Scholar 

  • Omira R, Dogan GG, Hidayat R, Husrin S, Prasetya G, Annunziato A, Proietti C, Probst P, Paparo MA, Wronna M, Zaytsev A, Pronin P, Giniyatullin A, Putra PS, Hartanto D, Ginanjar G, Kongko W, Pelinovsky E, Yalciner AC (2019) The September 28th, 2018, Tsunami In Palu-Sulawesi, Indonesia: A Post-Event Field Survey. Pure Appl Geophys 176:1379–1395. https://doi.org/10.1007/S00024-019-02145-Z

    Article  Google Scholar 

  • Ottinger M, Kuenzer C (2020) Spaceborne L-Band synthetic Aperture Radar Data for geoscientific analyses in coastal land applications: A review. Remote Sens 12. doi:https://doi.org/10.3390/rs12142228

  • Panuju DR, Trisasongko BH, Susetyo B, Raimadoya MA, Lees BG (2010) Historical fire detection of tropical forest from NDVI time-series data: Case study on Jambi, Indonesia. ITB J Sci 42 A:49–66. doi:https://doi.org/10.5614/itbj.sci.2010.42.1.5

  • Patria A, Putra PS (2020) Development of the Palu–Koro Fault in NW Palu Valley, Indonesia. Geosci Lett 7. doi:https://doi.org/10.1186/s40562-020-0150-2

  • Pourghasemi HR, Gayen A, Panahi M, Rezaie F, Blaschke T (2019) Multi-hazard probability assessment and map** in Iran. Sci Total Environ 692:556–571. https://doi.org/10.1016/j.scitotenv.2019.07.203

    Article  Google Scholar 

  • Qadir M, Noble AD, Qureshi AS, Gupta RK, Yuldashev T, Karimov A (2009) Salt-induced land and water degradation in the Aral Sea basin: A challenge to sustainable agriculture in Central Asia. Nat Res Forum 33:134–149

    Article  Google Scholar 

  • Rahardjo PP (2020) Study on the Phenomena of Liquefaction Induced Massive Landslides in 28 September 2018 Palu-Donggala Earthquake. In: Vilímek V, Wang F, Strom A, Sassa K, Bobrowsky PT, Takara K, Vilímek V, Wang F, Strom A, Sassa K, Bobrowsky PT, Takara K (eds). Understanding and Reducing Landslide Disaster Risk. pp 25–48

  • Razi P, Sri Sumantyo JT, Perissin D, Putra A, Hamdi, Widodo J, Purbantoro B, Dewata I (2019) Ground deformation measurement of Sinabung vulcano eruption using DInSAR technique. Journal of Physics: Conference Series, 1 edn. p 12008

  • Sarah D, Hutasoit LM, Delinom RM, Sadisun IA (2020) Natural Compaction of Semarang-Demak Alluvial Plain and Its Relationship to the Present Land Subsidence. Indonesian Journal on Geoscience 7:273–289. https://doi.org/10.17014/ijog.7.3.273-289

    Article  Google Scholar 

  • Sarah D, Soebowo E (2018) Land subsidence threats and its management in the North Coast of Java. IOP Conference Series: Earth and Environmental Science 118. doi:https://doi.org/10.1088/1755-1315/118/1/012042

  • Sidiq TP, Gumilar I, Meilano I, Abidin HZ, Andreas H, Permana A (2021) Land Subsidence of Java North Coast Observed by SAR Interferometry. IOP Conference Series: Earth and Environmental Science 873. doi:https://doi.org/10.1088/1755-1315/873/1/012078

  • Simons W, Broerse T, Shen L, Kleptsova O, Nijholt N, Hooper A, Pietrzak J, Morishita Y, Naeije M, Lhermitte S, Herman M, Sarsito DA, Efendi J, Sofian, Govers R, Vigny C, Abidin HZ, Pramono GH, Nugroho C, Visser P, Riva R (2022) A Tsunami Generated by a Strike-Slip Event: Constraints From GPS and SAR Data on the 2018 Palu Earthquake. J Geophys Res Solid Earth 127. doi:https://doi.org/10.1029/2022JB024191

  • Singh RK, Drews M, De la Sen M, Srivastava PK, Trisasongko BH, Kumar M, Pandey MK, Anand A, Singh SS, Pandey AK, Dobriyal M, Rani M, Kumar P (2021) Highlighting the compound risk of COVID-19 and environmental pollutants using geospatial technology. Sci Rep 11. doi:https://doi.org/10.1038/s41598-021-87877-6

  • Socquet A, Hollingsworth J, Pathier E, Bouchon M (2019) Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy. Nat Geosci 12:192–199. https://doi.org/10.1038/s41561-018-0296-0

    Article  Google Scholar 

  • Tarunamulia, Sammut J (2022) An evaluation of the engineering suitability of extensive brackishwater ponds in Barru, South Sulawesi Province, Indonesia. Aquaculture and Fisheries. doi: https://doi.org/10.1016/j.aaf.2022.06.004

  • Thompson PR, Widlansky MJ, Hamlington BD, Merrifield MA, Marra JJ, Mitchum GT, Sweet W (2021) Rapid increases and extreme months in projections of United States high-tide flooding. Nat Clim Chang 11:584–590. https://doi.org/10.1038/s41558-021-01077-8

    Article  Google Scholar 

  • Trisasongko BH, Panuju DR (2015) Characteristics of L-band backscatter coefficients of rubber plantation and their seasonal dynamics. AIP Conf Proc 1677:060006. https://doi.org/10.1063/1.4930686

    Article  Google Scholar 

  • Tunas IG, Tanga A, Oktavia SR (2020) Impact of landslides induced by the 2018 palu earthquake on flash flood in bangga river Basin, Sulawesi, Indonesia. J Ecol Eng 21:190–200. https://doi.org/10.12911/22998993/116325

    Article  Google Scholar 

  • Ulrich T, Vater S, Madden EH, Behrens J, van Dinther Y, van Zelst I, Fielding EJ, Liang C, Gabriel AA (2019) Coupled, Physics-Based Modeling Reveals Earthquake Displacements are Critical to the 2018 Palu, Sulawesi Tsunami. Pure Appl Geophys 176:4069–4109. https://doi.org/10.1007/s00024-019-02290-5

    Article  Google Scholar 

  • Yulianto F, Sofan P, Zubaidah A, Sukowati KAD, Pasaribu JM, Khomarudin MR (2015) Detecting areas affected by flood using multi-temporal ALOS PALSAR remotely sensed data in Karawang, West Java, Indonesia. Nat Hazards 77:959–985. https://doi.org/10.1007/S11069-015-1633-X

    Article  Google Scholar 

  • Zhang A, Jia G (2013) Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens Environ 134:12–23. https://doi.org/10.1016/J.RSE.2013.02.023

    Article  Google Scholar 

  • Zinno I, Elefante S, Mossucca L, De Luca C, Manunta M, Terzo O, Lanari R, Casu F (2015) A first assessment of the P-SBAS DInSAR algorithm performances within a cloud computing environment. IEEE J Sel Top Appl Earth Obs Remote Sens 8:4675–4686. https://doi.org/10.1109/JSTARS.2015.2426054

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Remote Sensing Research Centre – National Agency of Research and Innovation. Research Funding was obtained from the Ministry of Education, Culture, Research, and Technology, the Republic of Indonesia. Access to the GEP platform was a part of the Emergency Assistance on Rehabilitation and Reconstruction in Central Sulawesi activity sponsored by the Asian Development Bank (ADB).

Funding

This work was supported by a research fund from the Ministry of Education, Culture, Research, and Technology, the Republic of Indonesia. Access to the GEP platform was a part of the Emergency Assistance on Rehabilitation and Reconstruction in Central Sulawesi activity sponsored by the Asian Development Bank (ADB). Authors declare that they have no financial interests related to this research. All authors contributed to the study’s conception and design. Material preparation, data collection and analysis were performed by all authors. The first draft of the manuscript was written by Udhi Nugroho and further edited by Bambang Trisasongko. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by all authors. The first draft of the manuscript was written by Udhi Nugroho and further edited by Bambang Trisasongko. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bambang H. Trisasongko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nugroho, U.C., Tjahjono, B. & Trisasongko, B.H. Estimating tidal inundation in the aftermath of the 2018 Palu earthquake. Environ Earth Sci 82, 556 (2023). https://doi.org/10.1007/s12665-023-11240-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-023-11240-3

Keywords

Navigation