Log in

Evaluation of the predictions skills and uncertainty of a karst model using short calibration data sets at an Apulian cave (Italy)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The freshwater resource in karst is subjected to both sea level rise and an increasing pressure caused by the high-water demand. Therefore, develo** an understanding of the hydrogeological dynamics of the karst aquifer can be a useful tool for improving protection and management actions. Vora Bosco cave (Apulia, Southern Italy) was instrumented with a multi-parameter probe for groundwater level measurements, aimed at exploring the system behavior within the cave recharge area. To characterize and quantify the natural recharge and discharge behavior of the system, a simple reservoir model was developed, initially also with the intention of predicting groundwater dynamics. Based on the original time-series of water level observations, different calibration datasets were established using different split-sample and bootstrap** approaches, and a regional sensitivity analysis was executed. Furthermore, in addition to the original observation time-series, a 3-month extension was used as a model testing period. Using these analyses, the parameters identifiability and the predictions robustness for the model testing period were evaluated. Results reveal that while the calibration on the whole dataset, as well as the bootstrap** approaches, lead to better performances in the calibration and validation period of the original time-series, and to a higher model precision with smaller uncertainty ranges. their performance in the model testing period becomes very poor and the observed water level data no longer plots within the uncertainty bands. Based on this extensive analysis, the model is finally rejected. Our study therefore also confirms the importance of model validation, especially when only a short time-series of observations are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Alfio MR, Balacco G, Parisi A, Totaro V, Fidelibus MD (2020) Drought Index as Indicator of Salinization of the Salento Aquifer (Southern Italy). Water 12:1927. https://doi.org/10.3390/w12071927

    Article  Google Scholar 

  • Andriani GF, Walsh N (2010) Petrophysical and mechanical properties of soft and porous building rocks used in Apulian monuments (south Italy). In: Prikryl R, Torok A (eds) Natural stone resources for historical monuments, vol Special Publication 333. Geological Society of London, pp 129–141

    Google Scholar 

  • Andriani GF, Pastore N, Giasi CI, Parise M (2021) Hydraulic properties of unsaturated calcarenites by means of a new integrated approach. J Hydrol 602:126730

    Article  Google Scholar 

  • Arsenault R, Brissette F, Martel JL (2018) The hazards of split-sample validation in hydrological model calibration. J Hydrol 566(31):346–362

    Article  Google Scholar 

  • Beck HE, Wood EF, Pan M, Fisher CK, Miralles DM, van Dijk AIJM, McVicar TR, Adler RF (2019) MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull Am Meteorol Soc 100(3):473–500

    Article  Google Scholar 

  • Beven K (2008) Rainfall-runoff modelling: the primer. Wiley (reprint)

    Google Scholar 

  • Beven K, Binley A (1992) The future of distributed models: Model calibration and uncertainty prediction. Hydrol Process 6(3):279–298. https://doi.org/10.1002/hyp.3360060305

    Article  Google Scholar 

  • Bosellini A, Bosellini FR, Colalongo ML, Parente M, Russo A, Vescogni A (1999) Stratigraphic architecture of the Salento coast from Capo d’Otranto to S. Maria di Leuca (Apulia, southern Italy). Riv Ital Paleontol Stratigr 105:397–416

    Google Scholar 

  • Cantonati M, Poikane S, Pringle CM, Stevens LE, Turak E, Heino J, Richardson JS, Bolpagni R, Borrini A, Cid N, Ctvrtlikova M, Galassi DMP, Hajek M, Hawes I, Levkov Z, Naselli Flores L, Saber AA, Di Cicco M, Fiasca B, Hamilton PB, Kubecka J, Segadelli S, Znachor P (2020) Characteristics, main impacts, and stewardship of natural and artificial freshwater environments: consequences for biodiversity conservation. Water 12(1):260. https://doi.org/10.3390/w12010260

    Article  Google Scholar 

  • Chang Y, Hartmann A, Liu L, Jiang G, Wu J (2021) Identifying more realistic model structures by electrical conductivity observations of the karst spring. Water Resour Res. https://doi.org/10.1029/2020WR028587

    Article  Google Scholar 

  • Choi HT, Beven K (2006) Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in an application of TOPMODEL within the GLUE framework. J Hydrol 332:316–336. https://doi.org/10.1016/j.jhydrol.2006.07.012

    Article  Google Scholar 

  • Cotecchia V (2014) Le acque sotterranee e l’intrusione marina in Puglia: dalla ricerca all’emergenza nella salvaguardia della risorsa. Mem Descr Carta Geol It 92(1):1–511 (ISBN: 978-88-9311-003-7)

    Google Scholar 

  • D’Angeli IM, Vattano M, Parise M, De Waele J (2017) The coastal sulfuric acid cave system of Santa Cesarea Terme (Southern Italy). In: Klimchouk A et al (eds) Hypogene karst regions and caves of the world. Springer, Cave and Karst Systems of the World. https://doi.org/10.1007/978-3-319-53348-3_9

    Chapter  Google Scholar 

  • D’Angeli IM, Ghezzi D, Leuko S, Firrincieli A, Parise M, Fiorucci A, Vigna B, Addesso R, Baldantoni D, Carbone C, Mill AZ, Jurado V, Saiz-Jimenez C, De Waele J, Cappelletti M (2019) Geomicrobiology of a seawater-influenced active sulfuric acid cave. PLoS ONE 14(8):e0220706. https://doi.org/10.1371/journal.pone.0220706

    Article  Google Scholar 

  • D’Angeli IM, De Waele J, Fiorucci A, Vigna B, Bernasconi SM, Florea LJ, Liso IS, Parise M (2021) Hydrogeology and geochemistry of the sulfur karst springs at Santa Cesarea Terme (Apulia, southern Italy). Hydrogeol J 29:481–498. https://doi.org/10.1007/s10040-020-02275-y

    Article  Google Scholar 

  • Deharveng L, Stoch F, Gibert J, Bedos A, Galassi D, Zagmajster M, Brancelj A, Camacho A, Fiers F, Martin P, Giani N, Magniez G, Marmonier P (2009) Groundwater biodiversity in Europe. Freshw Biol 54:709–726. https://doi.org/10.1111/j.1365-2427.2008.01972.x

    Article  Google Scholar 

  • Delle Rose M, Federico A, Parise M (2004) Sinkhole genesis and evolution in Apulia, and their interrelations with the anthropogenic environment. Nat Hazards Earth Syst Sci 4:747–755

    Article  Google Scholar 

  • Dewandel B, Lachassagne P, Bakalowicz M, Weng P, Al-Malki A (2003) Evaluation of aquifer thickness by analysing recession hydrographs. Application to the Oman ophiolite hard-rock aquifer. J Hydrol 274(1–4):248–269

    Article  Google Scholar 

  • Dormann CF (2013) Parametrische Statistik: Verteilungen, maximum likelihood und GLM. In: R. Statistik und ihre Anwendungen. Springer. https://doi.org/10.1007/978-3-642-34786-3

  • Festa V, Fiore A, Parise M, Siniscalchi A (2012) Sinkhole evolution in the Apulian Karst of Southern Italy: a case study, with some considerations on Sinkhole Hazards. J Cave Karst Stud 74(2):137–147

    Article  Google Scholar 

  • Festa V, Fiore A, Miccoli MN, Parise M, Spalluto L (2015) Tectonics versus karst relationships in the Salento peninsula (Apulia, Southern Italy): implications for a comprehensive land-use planning. In: Lollino G, Manconi A, Guzzetti F, Bobrowsky MCP, Luino F (eds) Engineering geology for society and territory, vol 5, Urban geology, sustainable planning and landscape exploitation. Springer. https://doi.org/10.1007/978-3-319-09048-1

    Chapter  Google Scholar 

  • Fleury P, Plagnes V, Bakalowicz M (2007) Modelling of the functioning of karst aquifers with a reservoir model: application to Fontaine de Vaucluse (South of France). J Hydrol 345(1–2):38–49. https://doi.org/10.1016/j.jhydrol.2007.07.014

    Article  Google Scholar 

  • Ford D, Williams P (2007) Karst hydrogeology and geomorphology. Wiley (ISBN: 978-0-470-84997-2)

    Book  Google Scholar 

  • Funiciello R, Montone P, Parotto M, Salvini F, Tozzi M (1991) Geodynamical evolution of an intra-orogenic foreland: the Apulia case history (Italy). Boll Soc Geol Ital 110(3/4):419–425

    Google Scholar 

  • Gleam (2021) Downloads. https://www.gleam.eu/. Accessed 9 Oct 2022

  • GloH2O (2021) MSWEP. Multi-source weighted-ensemble precipitation. http://www.gloh2o.org/mswep/. Accessed 9 Oct 2022

  • Goldscheider N, Drew D (2007) Methods in karst hydrogeology. Taylor and Francis Group, International contribution to hydrogeology, London, p 26 (ISBN 13:978-0-415-428723-6)

    Google Scholar 

  • Gutierrez F, Parise M, De Waele J, Jourde H (2014) A review on natural and human-induced geohazards and impacts in karst. Earth-Sci Rev 138:61–88. https://doi.org/10.1016/j.earscirev.2014.08.002

    Article  Google Scholar 

  • Hartmann A, Wagener T, Rimmer A, Lange J, Brielmann H, Weiler M (2013) Testing the realism of model structures to identify karst system processes using water quality and quantity signatures. Water Resour Res 49:3345–3358. https://doi.org/10.1002/wrcr.20229,2013

    Article  Google Scholar 

  • Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: Review of hydrological modeling approaches. Rev Geophys 52:218–242. https://doi.org/10.1002/2013RG000443

    Article  Google Scholar 

  • Hollingsworth E, Brahana V, Inlander E, Slay M (2008) Karst Regions of the World (KROW), Global karst datasets and maps to advance the protection of karst species and habitats worldwide. USGS Scientific Investigations Report 2008–5023

  • Hörmann G (2016) Hydrologische Modelle. In: Fohrer N, Bormann H, Miegel K, Casper M, Bronstert A, Schumann A, Weiler M (eds) Utb basics: Vol. 4513 Hydrologie, 1st edn. Haupt Verlag

    Google Scholar 

  • Hornberger GM, Spear RC (1981) An approach to preliminary analysis of environmental systems. J Environ Manag 12:7–18

    Google Scholar 

  • Inguscio S, Rossi E, Parise M (2009) Biogeographical distribution of subterranean fauna in Apulia (Italy) in the context of the palaeo-geographic evolution of the area. In: Proc 15th Int Congr Speleology, Kerrville (Texas, USA), 2:749–754

  • Jeannin PY, Groves C, Hauselmann P (2007) Speleological investigations. In: Goldscheider N, Drew D (eds) Methods in karst hydrogeology, vol 26. Taylor and Francis, Int Contributions to Hydrogeology, pp 25–44

    Google Scholar 

  • Klemeš V (1986) Operational testing of hydrological simulation models. Hydrol Sci J 31(1):13–24. https://doi.org/10.1080/02626668609491024

    Article  Google Scholar 

  • Kresic N (2013) Water in karst: management, vulnerability, and restoration. McGraw Hill, New York

    Google Scholar 

  • Legates DR, McCabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241. https://doi.org/10.1029/1998WR900018

    Article  Google Scholar 

  • Liso IS, Parise M (2020) Apulian karst springs: a review. J Environ Sci Eng Technol 8:63–83. https://doi.org/10.12974/2311-8741.2020.08.7

    Article  Google Scholar 

  • Liso IS, Loiotine L, Andriani GF, Parise M (2019) Apulian caves as natural hydrogeological laboratories. Ital J Engng Geol Environ 1:67–72

    Google Scholar 

  • Liso IS, Chieco M, Fiore A, Pisano L, Parise M (2020) Underground geosites and caving speleotourism: some considerations, from a case study in Southern Italy. Geoheritage 12:13. https://doi.org/10.1007/s12371-020-00424-z

    Article  Google Scholar 

  • Maillet E (1905) Essais d’hydraulique souterraine et fluviale Librairie Sci. A. Hermann, Paris, p 218

    Google Scholar 

  • Margiotta S, Negri S (2005) Geophysical and stratigraphical research into deep groundwater and intruding seawater in the Mediterranean area (the Salento peninsula, Italy). Nat Hazards Earth Syst Sci 5:127–136

    Article  Google Scholar 

  • Margiotta S, Mazzone F, Negri S (2010) Stratigraphic revision of Brindisi-Taranto Plain: hydrogeological implications. Mem Descr Carta Geol It 90:165–180

    Google Scholar 

  • Margiotta S, Marini G, Fay S, D’Onghia FM, Liso IS, Parise M, Pinna M (2021) Hydro-stratigraphic conditions and human activity leading to development of a sinkhole cluster in a Mediterranean water ecosystem. Hydrology 8:111. https://doi.org/10.3390/hydrology8030111

    Article  Google Scholar 

  • Martens B, Miralles DG, Lievens H, van der Schalie R, de Jeu RAM, Fernández-Prieto D, Beck HE, Dorigo WA, Verhoest NEC (2017) GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci Model Dev 10:1903–1925. https://doi.org/10.5194/gmd-10-1903-201

    Article  Google Scholar 

  • Masciopinto C, Liso IS (2016) Assessment of the impact of sea-level rise due to climate change on coastal groundwater discharge. Sci Total Environ 569–570:672–680. https://doi.org/10.1016/j.scitotenv.2016.06.183

    Article  Google Scholar 

  • Masciopinto C, Semeraro F, La Mantia R, Inguscio S, Rossi E (2006) Stygofauna abundance and distribution in the fissures and caves of the Nardò (Southern Italy) fractured aquifer subject to reclaimed water injections. Geomicrobiology J 23:267–278. https://doi.org/10.1080/01490450600760690

    Article  Google Scholar 

  • Masciopinto C, Liso IS, Caputo MC, De Carlo L (2017) An integrated approach based on numerical modelling and geophysical survey to map groundwater salinity in fractured coastal aquifers. Water 9:875. https://doi.org/10.3390/w9110875

    Article  Google Scholar 

  • Mazzilli N, Guinot V, Jourde H (2012) Sensitivity analysis of conceptual model calibration to initialisation bias. Application to karst spring discharge models. Adv Water Resour 42(2):1–16

    Article  Google Scholar 

  • Mikszewski A, Kresic N (2015) Mathematical modeling of karst aquifers. In: Stevanovic Z (ed) Karst aquifers—characterization and engineering. Springer, Professional Practice in Earth Sciences, pp 283–298

    Chapter  Google Scholar 

  • Miralles DG, Holmes TRH, de Jeu RAM, Gash JH, Meesters AGCA, Dolman AJ (2011) Global land-surface evaporation estimated from satellite-based observations. Hydrol Earth Syst Sci 15:453–469. https://doi.org/10.5194/hess-15-453-2011

    Article  Google Scholar 

  • Mongelli G, Buccione R, Sinisi R (2015) Genesis of autochthonous and allochthonous Apulian karst bauxites (Southern Italy): Climate constraints. Sedimen Geol 325:168–176. https://doi.org/10.1016/j.sedgeo.2015.06.005

    Article  Google Scholar 

  • Olarinoye T, Gleeson T, Marx V, Seeger S, Adinehvand R, Allocca V, Andreo B, Apaéstegui J, Apolit C, Arfib B, Auler A, Barberá JA, Batiot-Guilhe C, Bechtel T, Binet S, Bittner D, Blatnik M, Bolger T, Brunet P, Charlier JB, Chen Z, Chiogna G, Coxon G, De Vita P, Doummar J, Epting J, Fournier M, Goldscheider N, Gunn J, Guo F, Guyot JL, Howden N, Huggenberger P, Hunt B, Jeannin PY, Jiang G, Jones G, Jourde H, Karmann I, Koit O, Kordilla J, Labat D, Ladouche B, Liso IS, Liu Z, Massei N, Mazzilli N, Mudarra M, Parise M, Pu J, Ravbar N, Sanchez LH, Santo A, Sauter M, Sivelle V, Skoglund RØ, Stevanovic Z, Wood C, Worthington S, Hartmann A (2020) Global karst springs hydrograph dataset for research and management of the world’s fastest- flowing groundwater. Sci Data 7:59. https://doi.org/10.1038/s41597-019-0346-5

    Article  Google Scholar 

  • Onorato R, Belmonte G, Costantini A (2006) Le grotte sommerse della costa neretina (Salento, SE Italia). Thalassia Salentina 29:39–54

    Google Scholar 

  • Palmentola G, Vignola N (1980) Dati di neotettonica sulla Penisola salentina. Progetto Finalizzato Geodinamica CNR 356:173–202

    Google Scholar 

  • Palmer AN (2007) Cave geology. Cave Books, p 454

    Google Scholar 

  • Parise M (2008) I sinkholes in Puglia. Mem Descr Carta Geol Ital 85:309–334

    Google Scholar 

  • Parise M (2019) Sinkholes. In: White WB, Culver DC, Pipan T (eds) Encyclopedia of caves, 3rd edn. Academic Press, Elsevier, pp 934–942 (ISBN 978-0-12-814124-3)

    Chapter  Google Scholar 

  • Parise M (2022) Sinkholes, subsidence and related mass movements. In: Shroder JJF (ed) Treatise on geomorphology, vol 5. Elsevier. Academic Press, pp 200–220. https://doi.org/10.1016/B978-0-12-818234-5.00029-8

    Chapter  Google Scholar 

  • Parise M, Federico A, Delle Rose M, Sammarco M (2003) Karst terminology in Apulia (southern Italy). Acta Carsolog 32(2):65–82

    Google Scholar 

  • Parise M, Ravbar N, Živanovic V, Mikszewski A, Kresic N, Mádl-Szőnyi J, Kukuric N (2015) Hazards in karst and managing water resources quality. In: Stevanovic Z (ed) Karst aquifers—characterization and engineering. Professional practice in earth sciences. Springer, Berlin, pp 601–687. https://doi.org/10.1007/978-3-319-12850-4_17

    Chapter  Google Scholar 

  • Parise M, Gabrovsek F, Kaufmann G, Ravbar N (2018) Recent advances in karst research: from theory to fieldwork and applications. In: Parise M, Gabrovsek F, Kaufmann G, Ravbar N (eds) Advances in karst research: theory, fieldwork and applications, vol special publ. 66. Geological Society, London, pp 1–24

    Google Scholar 

  • Parise M, Benedetto L, Chieco M, Fiore A, Lacarbonara M, Liso IS, Masciopinto C, Pisano L, Riccio A, Vurro M (2020) First outcomes of a project dedicated to monitoring groundwater resources in Apulia, Southern Italy. In: Bertrand C, Denimal S, Steinmann M, Renard P (eds) Eurokarst 2018, Besançon. Springer, Advances in Karst Science, pp 243–249. https://doi.org/10.1007/978-3-030-14015-1_27

  • Pepe M, Parise M (2014) Structural control on development of karst landscape in the Salento Peninsula. Acta Carsolog 43(1):101–114

    Article  Google Scholar 

  • Reynolds JE, Halldin S, Seibert J, Xu CY, Grabs T (2020) Robustness of flood-model calibration using single and multiple events. Hydrol Sci J 65(5):842–853. https://doi.org/10.1080/02626667.2019.1609682

    Article  Google Scholar 

  • Seibert J, Beven KJ (2009) Gauging the ungauged basin: how many discharge measurements are needed? Hydrol Earth Syst Sci 13:883–892

    Article  Google Scholar 

  • Shen H, Tolson BA, Mai J (2022) Time to update the split-sample approach in hydrological model calibration. Water Resour Res 58(3):135

    Article  Google Scholar 

  • Sorooshian S, Gupta VK, Fulton JL (1983) Evaluation of Maximum Likelihood Parameter estimation techniques for conceptual rainfall-runoff models: Influence of calibration data variability and length on model credibility. Water Resour Res 19:251–259. https://doi.org/10.1029/WR019i001p00251

    Article  Google Scholar 

  • Spear RC, Hornberger GM (1980) Eutrophication in peel inlet-II. Identification of critical uncertainties via generalized sensitivity analysis. Water Res 14(1):43–49. https://doi.org/10.1016/0043-1354(80)90040-8

    Article  Google Scholar 

  • Stevanović Z (2018) Global distribution and use of water from karst aquifers. In: Parise M, Gabrovsek F, Kaufmann G, Ravbar N (eds) Advances in karst research: theory, fieldwork and applications, vol sp publ 66. Geological Society, London, pp 217–236. https://doi.org/10.1144/SP466.26

    Chapter  Google Scholar 

  • Stevanovic Z (2019) Karst water resources in a changing world: Karst waters in potable water supply: a global scale overview. Environ Earth Sci 78:662. https://doi.org/10.1007/s12665-019-8670-9

    Article  Google Scholar 

  • Stoch F, Artheau M, Brancelj A, Galassi DMP, Malard F (2009) Biodiversity indicators in European ground waters: towards a predictive model of stygobiotic species richness. Freshw Biol 54(4):745–755

    Article  Google Scholar 

  • Tulipano L, Fidelibus MD (2002) Mechanisms of groundwater salinisation in a coastal karstic aquifer subject to over-exploitation. Proc 17th SWIM, Delft (The Netherlands). ISBN 90-800089–8–2, pp 262–272

  • Zumpano V, Pisano L, Parise M (2019) An integrated framework to identify and analyze karst sinkholes. Geomorphology 332:213–225

    Article  Google Scholar 

Download references

Acknowledgements

Support to T.L. and A.H. was provided by the Emmy Noether Programme of the German Research Foundation (DFG; grant no. HA 8113/1-1; project “Global Assessment of Water Stress in Karst Regions in a Changing World”). The work by I.S. Liso and M. Parise was partly funded through the Protocollo d’intesa con Regione Puglia per l’attuazione dell’art. 45 “Interventi per esplorazione dei fenomeni carsici,” comma 1 della L.R. n. 45 del 30/12/2013. We also thank the cavers Mariangela Martellotta and Francesco De Salve for cave survey and support during the work within the karst system.

fds

Author information

Authors and Affiliations

Authors

Contributions

TL and AH developed the model, and contributed to writing the manuscript; ISL and MP provided data, performed initial analyses, and contributed to writing the manuscript; MP and AH supervised the work. All authors reviewed the manuscript.

Corresponding author

Correspondence to I. S. Liso.

Ethics declarations

Competing interests

The authors declare no competing interests. Research data policy: The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11901 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leins, T., Liso, I.S., Parise, M. et al. Evaluation of the predictions skills and uncertainty of a karst model using short calibration data sets at an Apulian cave (Italy). Environ Earth Sci 82, 351 (2023). https://doi.org/10.1007/s12665-023-10984-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-023-10984-2

Keywords

Navigation