Log in

Hydrogeochemical characterization for the identification and quantification of the flows that give rise to groundwater in a tectonic valley

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Villa de Reyes Graben has an aquifer system with intensive extraction that exploits millennial waters (Carrillo-Rivera et al., Appl Hydrogeol 1:35–48, 1992) . This research, through hydrogeochemical characterization and mixing models based on extreme members (hydrogeochemical data of major ions and conservative trace elements), was intended to establish the effect of intensive extraction and anthropogenic activity in the aquifer system with overexploitation and undermined condition. According to results, two water families were identified, which in order of abundance are Na–HCO3 > Na–Mg–Ca–HCO3. The ionic exchange, silicate weathering, and mixing are the principal processes that take place in the aquifer. A mixing model methodology was applied to identify groundwater ternary mixtures consisting of an intermediate flow (C1), a shallow water flow with an artificial recharge or irrigation return (C2), and a regional thermal flow (C3). The results of the mixing model show the contribution of each end member C1 (64.7%), C2 (8.1%), and C3 (7.2%) to the water system. Finally, the hydrogeochemical characterization shows that the recharge is almost zero. The intensive extraction of more evolved water has produced subsidence and faulting effects on the ground, decreased piezometric levels, and the pollution of shallow water. Therefore, decision-makers must consider these findings to manage and handle water resources in an area-undermining condition. It is expected that the results of this work will be considered for future decision-making in places with similar situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abu-Jaber N (2001) Geochemical evolution and recharge of the shallow aquifers at Tulul al Ashaqif, NE Jordan. Environ Geol 41(3):372–383

    Article  Google Scholar 

  • Apambire WB, Boyle DR, Michel FA (1997) Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana. Environ Geol 33:13–24

    Article  Google Scholar 

  • Apello CA, Postman D (1996) Geochemistry. Groundwater and Pollution. AA Balkema, Rotterdam, Netherlands

    Google Scholar 

  • Aranda-Gómez JJ, Aranda-Gómez JM, Nieto-Samaniego AF (1989) Considerations about the tectonic evolution during the Cenozoic of the Sierra de Guanajuato and the southern part of the Central Table. Rev Mex Cienc Geol 8(1):3–46 (ISSBN: 1026-8774)

    Google Scholar 

  • Aranda-Gómez JJ, Henry CD, Luhr JF (2000) Post-Paleocene tectonomagmatic evolution of the Sierra Madre Occidental and the southern portion of the tectonic province of Basins and Ranges, Mexico. Bol Soc Geol Mex 53(1):59–71. https://doi.org/10.18268/BSGM2000v53n1a3

    Article  Google Scholar 

  • Barthold FK, Tyralla C, Schneider K, Vache KB, Frede H-G, Breuer L (2011) How many tracers do we need for end member mixing analysis (EMMA)? A sensitivity analysis. Water Resour Res 47:W08519. https://doi.org/10.1029/2011WR010604

    Article  Google Scholar 

  • Bretzler A, Osenbrück K, Gloaguen R, Ruprecht JS, Kebede S, Stadler S (2011) Groundwater origin and flow dynamics in active rift systems–a multi-isotope approach in the Main Ethiopian Rift. J Hydrol 402(3–4):274–289

    Article  Google Scholar 

  • Calvi C, Daniel M, Cristina D, Florencia G (2016) Abundance and distribution of fluoride concentrations in groundwater: La Ballenera catchment, southeast of Buenos Aires Province, Argentina. Environ Earth Sci 75:534. https://doi.org/10.1007/s12665-015-4972-8.C

    Article  Google Scholar 

  • Cardona-Benavides A, Martínez-Hernández JE, Alcalde-Alderete R, Castro-Laragoitia J (2006) La edad del agua subterránea que abastece la región de San Luis Potosí. Rev Uni Potosinos Año 2(7):20–25

    Google Scholar 

  • Carrera J, Vázquez-Suñé E, Castillo O, Sánchez-Vila X (2004) A methodology to compute mixing ratios with uncertain end-members. Water Resour Res 40:W12101. https://doi.org/10.1029/2003WR002263

    Article  Google Scholar 

  • Carrillo-Rivera JJ, Clark ID, Fritz P (1992) Investigating recharge of shallow and paleo-groundwaters in the Villa de Reyes basin SLP, Mexico, with environmental isotopes. Appl Hydrogeol 1(4):35–48

    Article  Google Scholar 

  • Carrillo-Rivera JJ (1985) Groundwaters for thermoelectric plants. C.F.E. Villa de Reyes, S.L.P., p 95

    Google Scholar 

  • Chae GT, Yun ST, Kim K, Mayer B (2006) Hydrogeochemistry of sodium bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water–rock interaction and hydrologic mixing. J Hydrol 321(1–4):326–343

    Article  Google Scholar 

  • Chae GT, Yun ST, Mayer B, Kim KH, Kim SY, Kwon JS, Koh YK (2007) Fluorine geochemistry in bedrock groundwater of South Korea. Sci Total Environ 385(1–3):272–283

    Article  Google Scholar 

  • CONAGUA (National Water Commission) (2005) Update of piezometric measurements in the aquifers called El Barril (municipalities of Villa de Ramos and Santo Domingo) Jaral de Berrios-Villa de Reyes (municipalities of Villa de Reyes and Villa de Zaragoza) belonging to the state of San Luis. p 95

  • CONAGUA (National Water Commission) (2015) Update of the average annual availability of water in the Jaral de Berrios—Villa de Reyes aquifer (2412). State of San Luis, Official Gazette of the Federation (OGF), p 17

  • Douglas SA, Ohlstein EH (2000) Human urotensin-II, the most potent mammalian vasoconstrictor identified to date, as a therapeutic target for the management of cardiovascular disease. Trends Cardiovasc Med 10(6):229–237

    Article  Google Scholar 

  • Genereux D, Wood SJ, Pringle CM (2002) Chemical tracing interbasin groundwater transfer in the lowland rainforest of Costa Rica. J Hydrol 258:163–178

    Article  Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170(3962):1088–1090

    Article  Google Scholar 

  • Harpaz Y, Bear J (1964) Investigations on mixing of waters in underground storage operations. XIII Assembly of the IUGG, Berkeley, California, I.A.S.H., IAHS-Red Books, Publ. no.64, pp 132–153

  • Henry CD, Aranda-Gomez JJ (1992) The real southern Basin and Range: mid- to late-Cenozoic extension in Mexico. Geology. https://doi.org/10.1130/0091-7613(1992)020%3c0701:TRSBAR%3e2.3.CO;2

    Article  Google Scholar 

  • Hooper R (2003) Diagnostic tools for mixing models of stream water chemistry. Water Resour Res 39(3):1055

    Article  Google Scholar 

  • Hooper RP, Christophersen N, Peters NE (1990) Modelling stream water chemistry as a mixture of soil water end-members—an application to the Panola Mountain Catchment, Georgia, USA. J Hydrol 116:321–343

    Article  Google Scholar 

  • Jankowski J, Acworth RI, Shekarforoush S (1998) Reverse ion exchange in deeply weathered porphyritic dacite fractured aquifer system, Yass, New South Wales, Australia. In: Arehart GB, Hulston JR (eds) Ninth International Symposium Water Rock Interaction. AA Balkema, Rotterdam, pp 243–246

    Google Scholar 

  • Laaksoharju M, Skårman C, Skårman E (1999) Multivariate mixing and mass balance (M3) calculations, a new tool for decoding hydrogeochemical information. Appl Geochem. https://doi.org/10.1016/S0883-2927(99)00024-4

    Article  Google Scholar 

  • Laaksoharju M, Gascoyne M, Gurban I (2008) Understanding groundwater chemistry using mixing models. Appl Geochem 23(7):1921–1940

    Article  Google Scholar 

  • Labarthe-Hernández G, Tristán-González M, Aranda-Gómez JJ (1982) Cenozoic stratigraphic review of the central part of the State of San Luis Potosí. Autonomous University of San Luis Potosí, Institute of Geology and Metallurgy, Technical Brochure, pp 85, 208

  • Labarthe-Hernández, G, Tristán-González M, Martínez-Ruíz VJ (1983) Geohydrological study of the Melchor Leaf, States of San Luis Potosí and Guanajuato. Autonomous University of San Luis Potosí, Institute of Geology and Metallurgy, Technical Brochure, pp 92, 109

  • Lee ES, Krothe NC (2001) A four-component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers. Chem Geol 179:129–143

    Article  Google Scholar 

  • Li P, Wu J, Qian H (2016) Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors: a case study in and around Hua County, China. Arab J Geosci 9(1):15. https://doi.org/10.1007/s12517-015-2059-1

    Article  Google Scholar 

  • López-Álvarez B, Ramos-Leal JA, Santacruz-De León G, Morán-Ramírez J, Eduardo Carranco-Lozada S, Noyola-Medrano C (2013) Subsidence associated with land use changes in urban aquifers with intensive extraction. Nat Sci 5(2a):291–295. https://doi.org/10.4236/ns.2013.52A041

    Article  Google Scholar 

  • López-Loera H, Tristán-González M (2013) Geology and aerial magnetometry of the Graben de Villa de Reyes, San Luis Potosí Mesa Central de México: tectonic and geohydrological implications. Bol Geol Soc Mex. https://doi.org/10.18268/bsgm2013v65n1a11

    Article  Google Scholar 

  • Mahlknecht J, Steinich B, Navarro de León I (2004) Groundwater chemistry and mass transfers in the Independence aquifer, central Mexico, by using multivariate statistics and mass-balance models. Environ Geol 45(6):781–795

    Article  Google Scholar 

  • Marandi A, Shand P (2018) Groundwater chemistry and the Gibbs Diagram. Appl Geochem 97:209–212. https://doi.org/10.1016/j.apgeochem.2018.07.009

    Article  Google Scholar 

  • Mifflin M D (1968) Delineation of ground-water flow systems in Nevada (Doctoral dissertation, University of Nevada, Reno)

  • Morán-Ramírez J, Ramos-Leal JA, Mahknecht J, Santacruz-De León G, Martín-Romero F, Fuentes Rivas R, Mora A (2018) Modeling of groundwater processes in a karstic aquifer of Sierra Madre Oriental, México. Appl Geochem 95:97–109. https://doi.org/10.1016/j.apgeochem.2018.05.011

    Article  Google Scholar 

  • Moran-Ramírez J, Morales-Arredondo JI, Armienta-Hernández MA, Ramos-Leal JA (2020) Quantification of the mixture of hydrothermal and fresh water in tectonic valleys. J Earth Sci 31(5):1007–1101

    Article  Google Scholar 

  • Morán-Ramírez J, Ramos-Leal JA (2014) The VISHMOD Methodology with hydrochemical modeling in intermountain (karstic) aquifers: case of the Sierra Madre Oriental, Mexico. J Geogr Geol 6:2. https://doi.org/10.5539/jgg.v6n2 (ISSN 1916-9787)

    Article  Google Scholar 

  • Nieto-Samaniego AF, Alaniz-Álvarez SA, Labarthe-Hernández G (1997) The postlaramidic cenozoic deformation in the southern part of the Central Table, Mexico. Mex J Geol Sci 14(1):13–25

    Google Scholar 

  • Noyola-Medrano MC, Ramos-Leal JA, Domínguez-Mariani E, Pineda-Martínez LF, López-Loera H, Carbajal N (2009) Factors that give rise to the mining of aquifers in arid environments: the San Luis Potosí Valley case. Mex J Geol Sci 26(2):395–410

    Google Scholar 

  • Ramos-Leal JA, Morán-Ramírez J, Silva-García JT, Fuentes-Rivas RM, Cruz-Cárdenas G, Ochoa-Estrada S, Estrada-Godoy F (2018) Identification of hydrogeochemical processes in a volcano-sedimentary aquifer of Ciénega de Chapala in Michoacán, Mexico. Arab J Geosci 11:422. https://doi.org/10.1007/s12517-018-3760-7

    Article  Google Scholar 

  • Ramos-Leal JA, Martínez-Ruiz VJ, Rangel-Méndez JR, Alfaro De La Torre MC (2007) Hydrogeological and mixing process of waters in aquifers in arid regions: a case study in San Luis Potosi Valley, Mexico. Environ Geol. https://doi.org/10.1007/s00254-007-0648-3

    Article  Google Scholar 

  • Rueedi J, Purtschert R, Beyerle U, Alberich C, Kipfer R (2005) Estimating groundwater mixing ratios and their uncertainties using a statistical multiparameter approach. J Hydrol 305:1–14

    Article  Google Scholar 

  • Schemel LE, Cox MH, Runkel RL, Kimball BA (2006) Multiple injected and natural conservative tracers quantify mixing in a stream confluence affected by acid mine drainage near Silverton. Colorado Hydrol Process 20(13):2727–2743

    Article  Google Scholar 

  • Skalbeck JD, Shevenell L, Widmer MC (2002) Mixing of thermal and non-thermal waters in the Steamboat Hills area, Nevada, USA. Geothermics 31(1):69–90

    Article  Google Scholar 

  • Stavric V (2004) Aquifer overexploitation and groundwater mining. In Balwois 2004, Conference on Water Observation and Information System for Decision Support, Ohrid, República de Macedonia, pp 25–29

  • Sunkari ED, Abu M (2019) Hydrochemistry with special reference to fluoride contamination in groundwater of the Bongo district, Upper East Region, Ghana. Sustain Water Resour Manag. https://doi.org/10.1007/s40899-019-00335-0

    Article  Google Scholar 

  • Tristán-González M (1986) Stratigraphy and tectonics of the graben of Villa de Reyes, in the States of San Luis Potosí and Guanajuato, Mexico. Inst Geol Metall Tech Broch 107:91

    Google Scholar 

  • Valentino GM, Stanzione D (2002) Source process of the thermal waters from the Phlegraean Fields (Naples, Italy) by means of selected minor and trace elements distribution. Chem Geol 245:245–274

    Google Scholar 

  • Wallick EI (1981) Chemical evolution of groundwater in a drainage basin of Holocene age, east-central Alberta, Canada. J Hydrol 54:245–283

    Article  Google Scholar 

  • Wanda EM, Mamba BB, Msagati TA (2017) Hydrochemical modelling of water quality in terms of emerging micropollutants in Mpumalanga, Gauteng and North West Provinces. Phys Chem Earth Parts a/b/c 100:143–157

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CONACyT, UASLP, and CeMIE-Geo (P02 project No. 207032-2013-04) for enabling the realization of this project. Also, the authors thanks María Elena García Arreola Ph.D. of the Analytical Laboratory, Earth Sciences Department, Faculty of Engineering of the Autonomous University of San Luis Potosí; Daniel Ramos P., M.S., of the Environmental Geochemical Laboratory, Geology Institute, UNAM. Finally, the authors thank the Geothermal Fluid Geochemistry Unit, Geophysics Institute, UNAM, for assistance in carrying out chemical analyses; engineer Roberto Rocha M. of the Geophysical Institute, UNAM, for his help during fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Morán-Ramírez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Martínez, I., Ramos-Leal, J.A., Cardona-Benavides, A. et al. Hydrogeochemical characterization for the identification and quantification of the flows that give rise to groundwater in a tectonic valley. Environ Earth Sci 80, 772 (2021). https://doi.org/10.1007/s12665-021-10057-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-10057-2

Keywords

Navigation