Log in

The impact of trace metals in marine sediments after a tailing dam failure: the Fundão dam case (Brazil)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The present study deals with one of the worst environmental disasters in Brazil so far, the failure of the Fundão tailing dam in the city of Mariana (MG) in 2015. The disaster released over 39.2 million cubic meters of iron ore mining tailings into the Doce River, reaching the southeast coast of Brazil. Data from trace metals and iron in seafloor sediments from Espírito Santo Continental Shelf (ESCS) were evaluated before the disaster and 1 year and 6 months after it. Results revealed contamination of shelf sediments with Zn, Pb, Ni, Cr, Cu and Fe before the disaster, and a noticeable increase in concentrations after the dam failure. Post-disaster, values of geoaccumulation index (NIgeo) for Zn and Fe as high as 8 and 25 were reached, respectively, classifying the samples as extremely polluted. The modified degree of contamination (mCd) values surpassed 32 at many stations which are classified as ultrahigh contaminated. The study also documents the increase of fine material deposition in the study area. Grain size trend analysis (GSTA) corroborated the increase of metal concentrations and mCd values toward the north of Doce River mouth and also at MPA—Costa das Algas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrahim GMS, Parker RJ (2008) Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136:227–238

    Article  Google Scholar 

  • Aguiar VMC, Lima MN, Abuchacra RC, Abuchacra PFF, Baptista Neto JA, Borges HV, Oliveira VC (2016) Contamination and ecological risks caused by trace elements at Guanabara Bay, Rio de Janeiro, Brazil: an index analysis approach. Ecotoxicol Environ Saf 133:306–315

    Article  Google Scholar 

  • Aguiar VMC, Abuchacra PFF, Neto JAB, de Oliveira AS (2018) Environmental assessment concerning trace metals and ecological risks at Guanabara Bay, RJ. Brazil Environ Monit Assess. https://doi.org/10.1007/s10661-018-6833-x

    Article  Google Scholar 

  • Baptista Neto JA, Wallner-kersanach M, Patchineelam S (2008) Poluição marinha. Interciência, Rio de Janeiro, p 412

    Google Scholar 

  • Bastos AC, Oliveria KSS, Fernandes LF, Pereira JB, Demoner LE, Neto RR, Costa ES, Sá F, Silva CA, Lerhback BD, Dias JC, Quaresma VS, Orlando MTD, Turbay CVG, Lopes BA, Leite MD, Ghisolfi RD, Lemos AT, Piva TRM, Lázaro GCS, Conceição JR, Lemos KN, Zen CM, Bonecker ACT, Castro MS, Quintas MC, Cavaggioni L, Oliveira EMC (2017) Monitoramento da influência da pluma do Rio Doce após o rompimento da barragem de Rejeitos em Mariana/MG—Novembro de 2015: processamento interpretação e consolidação de Dados. Universidade Federal do Espírito Santo, Vitória, ES

    Google Scholar 

  • Bourguignon S, Bastos A, Quaresma V, Vieira F, Pinheiro H, Amado-Filho G, de Moura R, Teixeira J (2018) Seabed morphology and sedimentary regimes defining fishing grounds along the Eastern Brazilian Shelf. Geosciences 8:91

    Article  Google Scholar 

  • Buhari T, Ismail A (2016) Heavy metals pollution and ecological risk assessment in surface sediments of West Coast of Peninsular Malaysia. Int J Environ Sci Dev 7:750–756. https://doi.org/10.18178/ijesd.2016.7.10.874

    Article  Google Scholar 

  • Cagnin RC, Quaresma VS, Chaillou G, Franco T, Bastos AC (2017) Arsenic enrichment in sediment on the eastern continental shelf of Brazil. Sci Total Environ 607–608:304–316

    Article  Google Scholar 

  • Callender E, Rice KC (2000) The urban environmental gradient: anthropogenic influences on the spatial and temporal distributions of lead and zinc in sediments. Environ Sci Technol 34:232–238. https://doi.org/10.1021/es990380s

    Article  Google Scholar 

  • Chen Y, Gao J, Yuan Y, Ma J, Yu S (2016) Relationship between heavy metal contents and clay mineral properties in surface sediments: Implications for metal pollution assessment. Cont Shelf Res 124:125–133

    Article  Google Scholar 

  • Cheriyan E, Sreekanth A, Mrudulrag SK, Sujatha CH (2015) Evaluation of metal enrichment and trophic status on the basis of biogeochemical analysis of shelf sediments of the southeastern Arabian Sea. India Cont Shelf Res 108:1–11. https://doi.org/10.1016/j.csr.2015.08.007

    Article  Google Scholar 

  • CPRM (2015) Monitoramento Especial da Bacia do Rio Doce: Relatório II, Monitoramento Especial da Bacia do Rio Doce. CPRM- Serviço Geológico do Brasil, p 37

  • Csavina J, Field J, Taylor MP, Gao S, Landázuri A, Betterton EA, Sáez AE (2012) A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci Total Environ 433:58–73. https://doi.org/10.1016/j.scitotenv.2012.06.013

    Article  Google Scholar 

  • de Porto MFS (2016) A tragédia da mineração e do desenvolvimento no Brasil: desafios para a saúde coletiva. Cad Saude Publica 32:1–3. https://doi.org/10.1590/0102-311X00211015

    Article  Google Scholar 

  • Dong C-D, Chen C-F, Chen C-W (2012) Contamination of zinc in sediments at river mouths and channel in Northern Kaohsiung Harbor, Taiwan. Int J Environ Sci Dev 3:517–521. https://doi.org/10.7763/IJESD.2012.V3.278

    Article  Google Scholar 

  • dos Vergilio CS, Lacerda D, de Oliveira BCV, Sartori E, Campos GM, de Pereira ALS, de Aguiar DB, da Souza TS, de Almeida MG, Thompson F, de Rezende CE (2020) Metal concentrations and biological effects from one of the largest mining disasters in the world (Brumadinho, Minas Gerais, Brazil). Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-62700-w

    Article  Google Scholar 

  • Dragun Z, Tepić N, Ramani S, Krasnići N, Filipović Marijić V, Valić D, Kapetanović D, Erk M, Rebok K, Kostov V, Jordanova M (2019) Mining waste as a cause of increased bioaccumulation of highly toxic metals in liver and gills of Vardar chub (Squalius vardarensis Karaman, 1928). Environ Pollut 247:564–576. https://doi.org/10.1016/j.envpol.2019.01.068

    Article  Google Scholar 

  • Duce RA, Tindale NW (1991) Atmospheric transport of iron and its deposition in the ocean. Limnol Oceanogr 36(8):1715–1726

    Article  Google Scholar 

  • Dudka S, Adriano DC (1997) Environmental impacts of metal ore mining and processing: a review. J Environ Qual 26:590–602. https://doi.org/10.2134/jeq1997.00472425002600030003x

    Article  Google Scholar 

  • Ellis DV, Ellis K (1994) Very deep STD. Mar Pollut Bull 28:472–476

    Article  Google Scholar 

  • Escobar H (2015) Mud tsunami wreaks ecological havoc in Brazil. Science 350:1138–1139

    Article  Google Scholar 

  • Gao S, Collins M (1991) A critique of the "Mc Laren method" for defining sediment transport paths. J Sediment Petrol 61:143–146

    Article  Google Scholar 

  • Gomes LEO, Correa LB, Sá F, Neto RR, Bernardino AF (2017) The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil. Mar Pollut Bull 120:28–36. https://doi.org/10.1016/j.marpolbul.2017.04.056

    Article  Google Scholar 

  • Grilo CF, Quaresma VdS, Amorim GFL, Bastos AC (2018) Changes in flocculation patterns of cohesive sediments after an iron ore mining dam failure. Mar Geol 400:1–11

    Article  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • IBAMA (2015) Laudo técnico preliminar. Impactos sociais decorrentes do desastre envolvendo o rompimento da barragem de Fundão, em Mariana, Minas Gerais. http://www.ibama.gov.br/phocadownload/noticiasambientais/laudotecnicopreliminar.pdf.

  • Jickells TD, Baker AR, Chance R (2016) Atmospheric transport of trace elements and nutrients to the oceans. Phil Trans R Soc A 374:20150286. https://doi.org/10.1098/rsta.2015.0286

    Article  Google Scholar 

  • Kapsimalis V, Talagani P, Panagiotopoulos IP, Kaberi H, Rousakis G, Kanellopoulos ThD, Iliakis S, Hatzianestis I (2013) Pollution assessment of the Drapetsona Keratsini coastal sea- bed. Bull Geol Soc Greece 47(3):1552–1561 https://doi.org/10.12681/bgsg.10994

    Article  Google Scholar 

  • Koski RA (2012) Metal dispersion resulting from mining activities in coastal environments: a pathways approach. Oceanography 25(2):170–183. https://doi.org/10.5670/oceanog.2012.53

    Article  Google Scholar 

  • Kossoff D, Hudson-Edwards KA, Dubbin WE, Alfredsson M (2012) Major and trace metal mobility during weathering of mine tailings: implications for floodplain soils. Appl Geochemistry 27:562–576. https://doi.org/10.1016/j.apgeochem.2011.11.012

    Article  Google Scholar 

  • Licínio MVVJ, Leão RT, Gaudereto FG, Costa-Gonçalves A, Patcheneelan SR, Carneiro MTWD, Freitas AC, Evangelista HS, Ribeiro JN, Pereira MG, Ribeiro AVFN (2015) Tendências históricas das taxas de sedimentação e acúmulo de elementos traço no baixo curso do Rio Doce, Espírito Santo. Brasil Cadernos De Geociências 12(1–2):13–24

    Google Scholar 

  • Le Roux JP (1994a) Net sediment transport patterns inferred from grain size trends, based upon definition of “transport vectors” —comment. Sed Geol 90:153–156

    Article  Google Scholar 

  • Le Roux JP (1994b) A spreadsheet template for determining sediment transport vectors from grain size parameters. Comput Geosci 20:433–440

    Article  Google Scholar 

  • Li T, Sun GH, Yang CP, Liang K, Ma SZ, Huang L, Luo WD (2019) Source apportionment and source-to-sink transport of major and trace elements in coastal sediments: combining positive matrix factorization and sediment trend analysis. Sci Total Environ 651:344–356

    Article  Google Scholar 

  • Long ER, MacDonald DD (1998) Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Hum Ecol Risk Assess 4:1019–1039

    Article  Google Scholar 

  • Longhini CM, Sá F, Neto RR (2018) Review and synthesis: iron input, biogeochemistry and ecological approaches in seawater. Environ Rev 135:er-2-018-0020

    Google Scholar 

  • Maanan M, Zourarah B, Sahabi M, Maanan M, Le Roy P, Mehdi K, Salhi F (2015) Environmental risk assessment of the Moroccan Atlantic continental shelf: the role of the industrial and urban area. Sci Total Environ 511:407–415. https://doi.org/10.1016/j.scitotenv.2014.12.098

    Article  Google Scholar 

  • MacDonald DD, Carr S, Clader FD, Long ED, Ingersoll CG (1996) Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5:253–278

    Article  Google Scholar 

  • Machado IF, Silvia SF (2001) 500 years of mining in Brazil: a brief review. Resour Policy 27:9–24. https://doi.org/10.1016/S0301-4207(01)00004-6

    Article  Google Scholar 

  • Mahu E, Nyarko E, Hulme S, Coale KH (2015) Distribution and enrichment of trace metals in marine sediments from the Eastern Equatorial Atlantic, off the Coast of Ghana in the Gulf of Guinea. Mar Pollut Bull 98:301–307. https://doi.org/10.1016/j.marpolbul.2015.06.044

    Article  Google Scholar 

  • Marguí E, Salvadó V, Queralt I, Hidalgo M (2004) Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes. Anal Chim Acta 524:151–159. https://doi.org/10.1016/j.aca.2004.05.043

    Article  Google Scholar 

  • Martinez ML, Intralawan A, Vazquez G, Perez-Maqueo O, Sutton P, Landgrave R (2007) The coasts of our world: ecological, economic and social Importance. Ecol Econ Elsevier 63(2–3):254–272

    Article  Google Scholar 

  • Mil-Homens M, Stevens RL, Abrantes F, Cato I (2006) Heavy metal assessment for surface sediments from three areas of the Portuguese continental shelf. Cont Shelf Res 26:1184–1205. https://doi.org/10.1016/j.csr.2006.04.002

    Article  Google Scholar 

  • Miranda LS, Marques AC (2016) Hidden impacts of the Samarco mining waste dam collapse to Brazilian marine fauna - an example from the staurozoans (Cnidaria). Biota Neotrop 16(2). https://doi.org/10.1590/1676-0611-BN-2016-0169

  • Müller G (1979) Schwermetalle in den sedimenten des Rheins—veränderungen seit 1971. Umschau 79:778–783

    Google Scholar 

  • Nogueira ICM, Pereira HPP, Parente CE, Gallo MN (2015) Climatologia de Ondas da Bacia do Espírito Santo e parte norte da Bacia de Campos. Fundação COPPETEC/UFRJ, Rio de Janeiro, p 145

  • Okbah MA, Nasr SM, Soliman NF, Khairy MA (2014) Distribution and contamination status of trace metals in the Mediterranean Coastal Sediments, Egypt. Soil Sediment Contam 23:656–676. https://doi.org/10.1080/15320383.2014.851644

    Article  Google Scholar 

  • Oliveira A, Palma C, Valença M (2011) Heavy metal distribution in surface sediments from the continental shelf adjacent to Nazaré canyon. Deep Res Part II Top Stud Oceanogr 58:2420–2432. https://doi.org/10.1016/j.dsr2.2011.04.006

    Article  Google Scholar 

  • Pereira AA, van Hattum B, Brouwer A, van Bodegom PM, Rezende CE, Salomons W (2008) Effects of iron-ore mining and processing on metal bioavailability in a tropical coastal lagoon. J Soils Sediments 8:239–252

    Article  Google Scholar 

  • Poizot E, Méar Y (2010) Using a GIS to enhance grain size trend analysis. Environ Modell Softw 25:513–525

    Article  Google Scholar 

  • Quaresma VS, Catabriga G, Bourguignon SN, Godinho E, Bastos AC (2015) Modern sedimentary processes along the Doce river adjacent continental shelf. Brazilian J Geol 45:10

    Google Scholar 

  • Quaresma VS, Bastos AC, Leite MD, Costa A, Cagnin RC, Grilo CF, Zogheib LF, Santos Oliveira KS (2020) The effects of a tailing dam failure on the sedimentation of the eastern Brazilian inner shelf. Cont Shelf Res 205:104172

    Article  Google Scholar 

  • Riba I, Delvalls TA, Forja JM (2002) Evaluationg the heavy metal contamination in sediments from the Guadlquivir estuary after the Aznalcóllar. Environ Monit Assess 77:191–207

    Article  Google Scholar 

  • Roche C, Thygesen K, Baker E, Bastos AC, Bernaudat L, Blyth S, Sharon Brooks SS, Chambers D, Coumans C, Deguignet M, Fourie A, Lottermoser B, McLellan B, Phillips J, Reinhardt W, Valix M, Wisdom T (2017) Mine tailings storage: safety is no accident. A UNEP rapid response assessment. United Nations Environment Programme and GRID-Arendal, Nairobi and Arendal

    Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. Treatise on geochemistry, 2nd edn. Elsevier, Amsterdam, pp 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4

    Chapter  Google Scholar 

  • Ruiz F (2001) Trace metals in estuarine sediments from the southwestern Spanish coast. Mar Pollut Bull 42(6):482–490. https://doi.org/10.1016/s0025-326x(00)00192-2

    Article  Google Scholar 

  • Schulz M, Prospero JM, Baker AR, Dentener F, Ickes L, Liss PS, Mahowald NM, Nickovic S, García-Pando CP, Rodríguez S, Sarin M, Tegen I, Duce RA (2012) Atmospheric transport and deposition of mineral dust to the ocean: implications for research needs. Environ Sci Technol 46:10390–10404

    Article  Google Scholar 

  • Segura FR, Nunes EA, Paniz FP, Paulelli ACC, Rodrigues GB, Braga GÚL, dos Reis Pedreira Filho W, Barbosa F, Cerchiaro G, Silva FF, Batista BL (2016) Potential risks of the residue from Samarco’s mine dam burst (Bento Rodrigues, Brazil). Environ Pollut 218:813–825. https://doi.org/10.1016/j.envpol.2016.08.005

    Article  Google Scholar 

  • Silva GP, Fontes MPF, C LM, Barros NF (2006) Caracterização química, física e mineralógica de estéreis e rejeito da mineração de Ferro da Mina de Alegria Mariana-MG. Pesqui Agropecuária Trop 36:45–52

    Google Scholar 

  • Srinivas R, Shynu R, Sreeraj MK, Ramachandran KK (2017) Trace metal pollution assessment in the surface sediments of nearshore area, off Calicut, southwest coast of India. Mar Pollut Bull 120:370–375. https://doi.org/10.1016/j.marpolbul.2017.05.028

    Article  Google Scholar 

  • Sternal B, Junttila J, Skirbekk K, Forwick M, Carroll J, Pedersen KB (2017) The impact of submarine copper mine tailing disposal from the 1970s on Repparfjorden, northern Norway. Mar Pollut Bull 120:136–153

    Article  Google Scholar 

  • Torfs H, Jiang J, Mehta AJ (2000) Assessment of the erodibility of fine/coarse sediment mixtures. Coast Estuar Fine Sediment Process, Elsevier 3:109–123

    Article  Google Scholar 

  • Ugwu IM, Igbokwe OA (2019) Sorption of heavy metals on clay minerals and oxides: a review. Advanced Sorption Process Applications, Serpil Edebali, IntechOpen

  • USEPA Exposure Factors Handbook (1997) Final Report. U.S. Environmental Protection Agency, Washington, DC, EPA/600/P-95/002F a-c

  • Van Rijn LC (2007) Unified view of sediment transport by currents and waves. II: suspended transport. J Hydraul Eng 133(6):668–689

    Article  Google Scholar 

  • Vieira FV, Bastos AC, Quaresma VS, Leite MD, Costa A, Oliveira KSS, Dalvi CF, Bahia RG, Holz VL, Moura RL, Filho GMA (2019) Along-shelf changes in mixed carbonate-siliciclastic sedimentation patterns. Cont Shelf Res 187:103964

    Article  Google Scholar 

  • Wang Y, Zhang H, Chen H, Chai F (2018) The sources and transport of iron in the North Pacific and its impact on marine ecosystems. Atmos Ocean Sci Lett. https://doi.org/10.1080/16742834.2019.1545513

    Article  Google Scholar 

  • Xu F, Hu B, Yuan S, Zhao Y, Dou Y, Jiang Z, Yin X (2018) Heavy metals in surface sediments of the continental shelf of the South Yellow Sea and East China Sea: sources, distribution and contamination. CATENA 160:194–200. https://doi.org/10.1016/j.catena.2017.09.022

    Article  Google Scholar 

  • Yao Q, Wang X, Jian H, Chen H, Yu Z (2016) Behavior of suspended particles in the Changjiang Estuary: size distribution and trace metal contamination. Mar Pollut Bull 103(1–2):159–167

    Article  Google Scholar 

  • Zarezadeh R, Rezaee P, Lak R, Masoodi M, Ghorbani M (2017) A study of textural and accumulation heavy metals of sediments in mangrove ecosystem of Persian Gulf, South Iran. Indian J Geo Mar Sci 46:78–85

    Google Scholar 

Download references

Acknowledgements

This research was developed under the grants Gerenciamento Costeiro (FAPES) and Recuperação da Bacia do Rio Doce (FAPES/CNPq/CAPES/ANA). Co-authors (Kyssyanne Samirah de Oliveiraa and Fernanda Vedoato Vieiraa) had graduate scholarships from CAPES, and ACB and JABN are CNPq Research Fellows. Sampling permission for the eight samples collected in Costa das Algas MPA was provided by the Instituto Chico Mendes para a Conservação da Biodiversidade- Environment Ministry-Brazil, number 65967-1.

Author information

Authors and Affiliations

Authors

Contributions

VSQ: conceptualization; data curation; formal analysis; funding acquisition; investigation; project administration; roles/writing—original draft; writing—review and editing. VMCA: formal analysis; investigation; methodology; roles/writing—original draft; writing—review and editing. KSO: formal analysis; methodology; roles/writing—original draft; writing—review and editing. FVV: methodology; roles/writing—original draft. ACB: data curation; funding acquisition; writing—review and editing. FS: writing—review and editing. JABN: formal analysis; investigation; roles/writing—original draft; writing—review and editing.

Corresponding author

Correspondence to A. C. Bastos.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quaresma, V.S., Aguiar, V.M.C., Bastos, A.C. et al. The impact of trace metals in marine sediments after a tailing dam failure: the Fundão dam case (Brazil). Environ Earth Sci 80, 571 (2021). https://doi.org/10.1007/s12665-021-09817-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09817-x

Keywords

Navigation