Log in

COP*KAT: a modified COP vulnerability map** method for karst terrains using KARSTLOP factors and fuzzy logic

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Vulnerability assessment is one of the most effective tools for the quality protection of karst aquifers. In the COP method, three essential factors, i.e., karstification process (K), atmospheric conditions (A), and tectonic (T) of the KARSTLOP method, are not considered despite being important factors in karstic aquifer vulnerability. This study aims to develop a new method to obtain the vulnerability map for karst aquifers based on the COP method and the factors used in the KARSTLOP method. The new method, namely COP*KAT, considers K, A, and T factors in the COP method using fuzzy logic. A comparison of microbial and nitrate contamination indices for livestock and agriculture land use, respectively, to the distribution of vulnerability classes for three springs in the study area (Dorfak region, Iran) reveals the more efficient performance of COP*KAT compared to COP in vulnerability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Modified from Ghezelayagh et al. 2020)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdullah TO, Ali SS, Al-Ansari N, Knutsson S (2017) Vulnerability of groundwater to pollution using three different models in Halabja Saidsadiq basin, Iraq. European Water EW Publications, pp 353–359

  • Abdullah TO, Ali SS, Al-Ansari NA, Knutsson S (2020) Assessment of groundwater vulnerability to pollution using two different vulnerability models in Halabja-Saidsadiq Basin, Iraq. Groundw Sustain Dev 10:100276

    Article  Google Scholar 

  • Alavi M (1996) Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran. J Geodyn 21:1–33

    Article  Google Scholar 

  • Aller L, Bennett T, Lehr J, Petty R, Hackett G (1987) DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. US Environmental Protection Agency, Washington, p 455

    Google Scholar 

  • Amil A, Avcı P, Çil A, Muhammetoğlu A, Özyurt NN (2020) Significance of validation for karst aquifers’ vulnerability assessments: Antalya Travertine Plateau (Turkey) application. J Contam Hydrol 228:103557

    Article  Google Scholar 

  • Andreo B, Goldscheider N, Vadillo I, Vías JM, Neukum C, Sinreich M, Jiménez P, Brechenmacher J, Carrasco F, Hötzl H (2006) Karst groundwater protection: first application of a Pan-European Approach to vulnerability, hazard and risk map** in the Sierra de Líbar (Southern Spain). Sci Total Environ 357:54–73

    Article  Google Scholar 

  • Andreo B, Ravbar N, Vías J (2009) Source vulnerability map** in carbonate (karst) aquifers by extension of the COP method: application to pilot sites. Hydrogeol J 17:749–758

    Article  Google Scholar 

  • Baldi E, Guastaldi E, Rossetto R (2009) Evaluation of intrinsic groundwater vulnerability to pollution: COP method for pilot area of Carrara hydrogeological system (Northern Tuscany, Italy). General Assembly 2009 European Geosciences Union.

  • Bensaoula F, Adjim N, Adjim M, Collignon B, Zeghid K (2016) First application of the COP method to vulnerability map** in the Meffrouch catchment. LARHYSS Journal P-ISSN 1112–3680/E-ISSN 2521-9782:45-59.

  • Çil A, Muhammetoglu A, Ozyurt N, Yenilmez F, Keyikoglu R, Amil A, Muhammetoglu H (2020) Assessment of groundwater contamination risk with scenario analysis of hazard quantification for a karst aquifer in Antalya, Turkey. Environ Earth Sci 79:1–14

    Article  Google Scholar 

  • Civita M, De Maio M (2004) Assessing and map** groundwater vulnerability to contamination: the Italian combined approach. Geofísica Internacional 43:513–532

    Google Scholar 

  • Clarke R (2013) Water: the international crisis. Routledge, Milton Park

    Book  Google Scholar 

  • de Castro TT, Velásques LNM (2017) Assessment of intrinsic vulnerability to the contamination of karst aquifer using the COP method in the Carste Lagoa Santa Environmental Protection Unit. Braz Environ Earth Sci 76:445

    Article  Google Scholar 

  • Dimitriou E, Zacharias I (2006) Groundwater vulnerability and risk map** in a geologically complex area by using stable isotopes, remote sensing and GIS techniques. Environ Geol 51:309–323

    Article  Google Scholar 

  • Dixon B (2005) Groundwater vulnerability map**: a GIS and fuzzy rule based integrated tool. Appl Geogr 25:327–347

    Article  Google Scholar 

  • Doerfliger N, Jeannin P-Y, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Geol 39:165–176

    Article  Google Scholar 

  • Entezari M, Yamani M, Aghdam MJ (2016) Evaluation of intrinsic vulnerability, hazard and risk map** for karst aquifers, Khorein aquifer, Kermanshah province: a case study. Environ Earth Sci 75:435

    Article  Google Scholar 

  • Ford D, Williams PD (2013) Karst hydrogeology and geomorphology. Wiley, Hoboken

    Google Scholar 

  • Foster S, Hirata R, Andreo B (2013) The aquifer pollution vulnerability concept: aid or impediment in promoting groundwater protection? Hydrogeol J 21:1389–1392

    Article  Google Scholar 

  • Foster S (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy.

  • Ghezelayagh P, Javadi S, Kavousi A (2020) Assessment of groundwater recharge in carbonate aquifers based on a modified KARSTLOP–AHP method (case study: Dorfak region, Iran). Environ Earth Sci 79:92. https://doi.org/10.1007/s12665-020-8829-4

    Article  Google Scholar 

  • Goldscheider N, Klute M, Sturm S, Hötzl H (2000) The PI method–a GIS-based approach to map** groundwater vulnerability with special consideration of karst aquifers. Z Angew Geol 46:157–166

    Google Scholar 

  • Guastaldi E, Graziano L, Liali G, Brogna FNA, Barbagli A (2014) Intrinsic vulnerability assessment of Saturnia thermal aquifer by means of three parametric methods: SINTACS, GODS and COP. Environ Earth Sci 72:2861–2878

    Article  Google Scholar 

  • Guo Y, Zhai Y, Wu Q, Teng Y, Jiang G, Wang J, Guo F, Tang Q, Liu S (2016) Proposed APLIE method for groundwater vulnerability assessment in karst-phreatic aquifer, Shandong Province, China: a case study. Environ Earth Sci 75:112

    Article  Google Scholar 

  • Hamdan I, Margane A, Ptak T, Wiegand B, Sauter M (2016) Groundwater vulnerability assessment for the karst aquifer of Tanour and Rasoun springs catchment area (NW-Jordan) using COP and EPIK intrinsic methods. Environ Earth Sci 75:1474

    Article  Google Scholar 

  • Hamdan I, Ptak T, Wiegand B, Sauter M (2020) Development of a quantitative transport-time-based groundwater vulnerability model for non-point-source pollution in karst aquifers: a conceptual approach and example from the Tanour and Rasoun spring catchment, northwestern Jordan. Hydrogeol J 28(3):1091–1106

    Article  Google Scholar 

  • Iván V, Mádl-Szőnyi J (2017) State of the art of karst vulnerability assessment: overview, evaluation and outlook. Environ Earth Sci 76:112

    Article  Google Scholar 

  • Jang H, Lasry N, Miller K, Mazur E (2017) Collaborative exams: Cheating? Or learning? Am J Phys 85:223–227. https://doi.org/10.1119/1.4974744

    Article  Google Scholar 

  • Jiménez-Madrid A, Martínez-Navarrete C, Carrasco-Cantos F (2010) Groundwater risk intensity assessment. Application to carbonate aquifers of the western Mediterranean (Southern Spain). Geodin Acta 23:101–111

    Article  Google Scholar 

  • Jones JAA (2011) Sustaining groundwater resources: a critical element in the global water crisis. Springer, Berlin

    Book  Google Scholar 

  • Jones NA, Hansen J, Springer AE, Valle C, Tobin BW (2019) Modeling intrinsic vulnerability of complex karst aquifers: modifying the COP method to account for sinkhole density and fault location. Hydrogeol J 27:2857–2868

    Article  Google Scholar 

  • Kavouri K, Plagnes V, Tremoulet J, Dörfliger N, Rejiba F, Marchet P (2011) PaPRIKa: a method for estimating karst resource and source vulnerability—application to the Ouysse karst system (southwest France). Hydrogeol J 19:339–353

    Article  Google Scholar 

  • Kresic N, Stevanovic Z (2009) Groundwater hydrology of springs: engineering, theory, management and sustainability. Butterworth-Heinemann, Oxford

    Google Scholar 

  • LaMoreaux PE, LaMoreaux J (2007) Karst: the foundation for concepts in hydrogeology. Environ Geol 51:685–688

    Article  Google Scholar 

  • Leyland R, Witthüser K (2008) Vulnerability map** in South African karst terrains. Water and Urban Development Paradigms: towards an Integration of Engineering, Design and Management Approaches 459

  • Lodwick WA, Monson W, Svoboda L (1990) Attribute error and sensitivity analysis of map operations in geographical informations systems: suitability analysis. Int J Geogr Inf Syst 4:413–428

    Article  Google Scholar 

  • Machiwal D, Jha MK, Singh VP, Mohan C (2018) Assessment and map** of groundwater vulnerability to pollution: current status and challenges. Earth Sci Rev 185:901–927

    Article  Google Scholar 

  • Marín A, Dörfliger N, Andreo B (2012) Comparative application of two methods (COP and PaPRIKa) for groundwater vulnerability map** in Mediterranean karst aquifers (France and Spain). Environ Earth Sci 65:2407–2421

    Article  Google Scholar 

  • Milan SG, Roozbahani A, Banihabib ME (2018) Fuzzy optimization model and fuzzy inference system for conjunctive use of surface and groundwater resources. J Hydrol 566:421–434

    Article  Google Scholar 

  • Milanović S, Dragišić V, Radulović MM, Stevanović Z (2015) Prevent leakage and mixture of Karst groundwater. In: Stevanović Z (ed) Karst Aquifers—characterization and engineering. Springer International Publishing, Cham, pp 531–599

    Chapter  Google Scholar 

  • Montgomery B, Dragićević S, Dujmović J (2015) A soft computing logic method for agricultural land suitability evaluation. In: Proceedings of GeoComputation 2015 Conference Dallas, USA. pp 298–304

  • Moreno-Gómez M, Pacheco J, Liedl R, Stefan C (2018) Evaluating the applicability of European karst vulnerability assessment methods to the Yucatan karst. Mexico Environ Earth Sci 77:682

    Article  Google Scholar 

  • Nossa TCB, Leal LRB, ZUCCHI MdR, AZEVEDO AEGd (2012) Utilização de análises hidroquímicas e da metodologia COP para determinação da vulnerabilidade do aquífero cárstico salitre na região de Irecê-BA

  • Ocalir EV, Ercoskun OY, Tur R (2010) An integrated model of GIS and fuzzy logic (FMOTS) for location decisions of taxicab stands. Expert Syst Appl 37:4892–4901

    Article  Google Scholar 

  • Parise M, Gunn J (2007) Natural and anthropogenic hazards in karst areas: recognition, analysis and mitigation. Geol Soc Lond 279(1):1–3

    Article  Google Scholar 

  • Parise M, Sammarco M (2015) The historical use of water resources in karst. Environ Earth Sci 74:143–152

    Article  Google Scholar 

  • Pavlis M, Cummins E (2014) Assessing the vulnerability of groundwater to pollution in Ireland based on the COST-620 Pan-European approach. J Environ Manage 133:162–173

    Article  Google Scholar 

  • Petrović B (2020) Intrinsic groundwater vulnerability assessment by multiparameter methods, a case study of Suva Planina Mountain (SE Serbia). Environ Earth Sci 79:85

    Article  Google Scholar 

  • Polemio M, Casarano D, Limoni PP (2009) Karstic aquifer vulnerability assessment methods and results at a test site (Apulia, southern Italy). Nat Hazards Earth Syst Sci 9(4):1461–1470

    Article  Google Scholar 

  • Radulovic M, Stevanovic Z, Radulovic M (2010) First outcomes from new approach in assessing recharge of highly Karstified Terrains—cases examples from Montenegro. In: Andreo B, Carrasco F, Durán JJ, LaMoreaux JW (eds) Advances in research in Karst Media. Springer, Berlin, pp 25–30

    Chapter  Google Scholar 

  • Radulovic M, Stevanovic Z, Radulovic M (2012) A new approach in assessing recharge of highly karstified terrains–Montenegro case studies. Environ Earth Sci 65:2221–2230. https://doi.org/10.1007/s12665-011-1378-0

    Article  Google Scholar 

  • Radulovic M, Radulovic M, Stevanovic Z, Sekulic G, Radulovic V, Buric M, Novakovic D, Vako E, Blagojevic M, Devic N, Radojevic D (2015) Hydrogeology of the Skadar Lake basin (Southeast Dinarides) with an assessment of considerable subterranean inflow. Environ Earth Sci 74:71–82. https://doi.org/10.1007/s12665-015-4090-7

    Article  Google Scholar 

  • Ray J, O’dell P (1993) DIVERSITY: a new method for evaluating sensitivity of groundwater to contamination. Environ Geol 22:345–352

    Article  Google Scholar 

  • Rijsberman FR (2006) Water scarcity: fact or fiction? Agric Water Manag 80:5–22

    Article  Google Scholar 

  • Sappa G, Ferranti F, Luciani G (2016) Vulnerability assessment of karst aquifer feeding Pertuso Spring (Central Italy): comparison between different applications of COP method. EGUGA:EPSC2016–11560

  • Stöcklin J (1974) Northern Iran: Alborz Mountains. Geol Soc Lond 4:213–234 (Special Publications)

    Article  Google Scholar 

  • Stöcklin J, Setudehnia A (1971) Stratigraphic lexicon of Iran. Part 1: Central, North and East Iran. Geological Survey of Iran, Report 18

  • Sullivan TP, Gao Y (2017) Development of a new P3 (Probability, Protection, and Precipitation) method for vulnerability, hazard, and risk intensity index assessments in karst watersheds. J Hydrol 549:428–451

    Article  Google Scholar 

  • Vakilian KA, Massah J (2018) A fuzzy-based decision making software for enzymatic electrochemical nitrate biosensors. Chemom Intell Lab Syst 177:55–63

    Article  Google Scholar 

  • Vías J, Andreo B, Perles M, Carrasco F, Vadillo I, Jiménez P (2006) Proposed method for groundwater vulnerability map** in carbonate (karstic) aquifers: the COP method. Hydrogeol J 14:912–925

    Article  Google Scholar 

  • Vías J, Andreo B, Ravbar N, Hötzl H (2010) Map** the vulnerability of groundwater to the contamination of four carbonate aquifers in Europe. J Environ Manage 91:1500–1510

    Article  Google Scholar 

  • Yıldırım M, Topkaya B (2007) Groundwater protection: a comparative study of four vulnerability map** methods. Clean–soil Air Water 35:594–600

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Javadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghezelayagh, P., Javadi, S. & Kavousi, A. COP*KAT: a modified COP vulnerability map** method for karst terrains using KARSTLOP factors and fuzzy logic. Environ Earth Sci 80, 592 (2021). https://doi.org/10.1007/s12665-021-09789-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09789-y

Keywords

Navigation