Log in

Valorization of Kraft Lignin via Its Conversion into Lignin Nanoparticles to Act Both as DDS and Biostimulator for Plant

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Lignin is the second most critical natural heteropolymer that has the potential to produce several value-added products. Around 85% of the lignin generated worldwide is produced as kraft lignin (KL), a type of industrial lignin obtained from kraft pulp. KL-containing effluents harm aquatic life, such as respiratory stress, liver damage, and genotoxicity. In this study, an attempt was made to create multifunctional lignin nanoparticles (LNP) using different solvents such as methanol, tetrahydrofuran (THF), ethylene glycol, DMSO, and 70% ethanol using KL and its application as drug delivery system was evaluated. The produced particles were characterized by dynamic light scattering (DLS), Zeta potential, FESEM, thermogravimetric analysis (TGA), XRD, and FTIR. The curcumin encapsulated LNP (LNP-C) was made (size > 99% < 300 nm, − 18.5 mV Zeta Potential, crystallite size of 7.9 nm, 10.6 nm, and 6.1 nm, lattice strain of 0.01496, 0.01593, and 0.02594) as a vehicle for drug delivery. The IC50 value of LNP-C was determined to be 12.2803 ± 1.397 µg/ml. LNP’s role as DDS was found significant. Moreover, interestingly LNPs acted as a growth stimulator when examined using the Vigna radiata seed assay.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Bajpai, P.: Management of pulp and Paper mill Waste, vol. 431. Springer, Switzerland (2015)

    Book  Google Scholar 

  2. Bhatnagar, A.: Assessment of physico-chemical characteristics of paper industry effluents. Rasayan J. Chem. 8(1), 143–145 (2015)

    Google Scholar 

  3. Bajpai, P.: Pulp and paper industry: energy conservation. Elsevier, Hoboken (2016)

    Google Scholar 

  4. Mandal, D.D., Singh, G., Majumdar, S., Chanda, P.: Challenges in develo** strategies for the valorization of lignin—a major pollutant of the paper mill industry. Environ. Sci. Pollut. Res. (2022). https://doi.org/10.1007/s11356-022-24022-4

    Article  Google Scholar 

  5. Pokhrel, D., Viraraghavan, T.: Treatment of pulp and paper mill wastewater—a review. Sci. Total Environ. 333(1–3), 37–58 (2004). https://doi.org/10.1016/j.scitotenv.2004.05.017

    Article  Google Scholar 

  6. Gopal, P.M., Sivaram, N.M., Barik, D.: Paper industry wastes and energy generation from wastes. In energy from toxic organic waste for heat and power generation (pp. 83–97). Woodhead Publishing. (2019). https://doi.org/10.1016/B978-0-08-102528-4.00007-9

  7. Pradhan, A., Sahu, S.K.: Process details and effluent characteristics of a rice mill in the Sambalpur district of Orissa. Control Pollut. 20(1), 111–124 (2004)

    Google Scholar 

  8. Raj, A., Kumar, S., Haq, I., Singh, S.K.: Bioremediation and toxicity reduction in pulp and paper mill effluent by newly isolated ligninolytic Paenibacillus sp. Ecol. Eng. 71, 355–362 (2014). https://doi.org/10.1016/j.ecoleng.2014.07.002

    Article  Google Scholar 

  9. Beisl, S., Friedl, A., Miltner, A.: Lignin from micro-to nanosize: applications. Int. J. Mol. Sci. 18(11), 2367 (2017). https://doi.org/10.3390/ijms18112367

    Article  Google Scholar 

  10. Raj, A., Reddy, M.K., Chandra, R.: Identification of low molecular weight aromatic compounds by gas chromatography–mass spectrometry (GC–MS) from kraft lignin degradation by three Bacillus sp. Int. Biodeterior. Biodegrad. 59(4), 292–296 (2007). https://doi.org/10.1016/j.ibiod.2006.09.006

    Article  Google Scholar 

  11. Matsakas, L., Karnaouri, A., Cwirzen, A., Rova, U., Christakopoulos, P.: Formation of lignin nanoparticles by combining organosolv pretreatment of birch biomass and homogenization processes. Molecules (2018). https://doi.org/10.3390/molecules23071822

    Article  Google Scholar 

  12. Lindström-Seppä, P., Huuskonen, S., Kotelevtsev, S., Mikkelson, P., Räänen, T., Stepanova, L., Hänninen, O.: Toxicity and mutagenicity of waste waters from baikalsk pulp and paper mill: evaluation of pollutant contamination in lake baikal. Mar. Environ. Res. 46(1–5), 273–277 (1998)

    Article  Google Scholar 

  13. Huang, L.Z., Ma, M.G., Ji, X.X., Choi, S.E., Si, C.: Recent developments and applications of hemicellulose from wheat straw: a review. Front. Bioeng. Biotechnol. 9, 690773 (2021). https://doi.org/10.3389/fbioe.2021.690773

    Article  Google Scholar 

  14. Liu, X., Lin, Q., Yan, Y., Peng, F., Sun, R., Ren, J.: Hemicellulose from plant biomass in medical and pharmaceutical application: a critical review. Curr. Med. Chem. 26(14), 2430–2455 (2019). https://doi.org/10.2174/0929867324666170705113657

    Article  Google Scholar 

  15. Shokri, J., Adibkia, K.: Application of cellulose and cellulose derivatives in pharmaceutical industries. Cellul.-Med. Pharm. Electron. Appl. (2013). https://doi.org/10.5772/55178

    Article  Google Scholar 

  16. Zhang, J., Ying**, Q.I., Yongfeng, S.H.E.N., Hua, L.I.: Research progress on chemical modification and application of cellulose: a review. Mater. Sci. 28(1), 60–67 (2022). https://doi.org/10.5755/j02.ms.25485

    Article  Google Scholar 

  17. Doyle, A.M., Shaikhutdinov, S.K., Freund, H.J.: Surface-bonded precursor determines particle size effects for alkene hydrogenation on palladium. AngewandteChemie Int. Ed. 44(4), 629631 (2005). https://doi.org/10.1002/anie.200461614

    Article  Google Scholar 

  18. Kasuya, A., Milczarek, G., Dmitruk, I., Barnakov, Y., Czajka, R., Perales, O., Liu, X., Tohji, K., Jeyadevan, B., Shinoda, K., Ogawa, T.: Size-and shape-controls and electronic functions of nanometer-scale semiconductors and oxides. Colloids Surf., a. 202(2–3), 291–296 (2002). https://doi.org/10.1016/S0927-7757(01)01073-1

    Article  Google Scholar 

  19. Culebras, M., Collins, G.A., Beaucamp, A., Geaney, H., Collins, M.N.: Lignin/Si hybrid carbon nanofibers towards highly efficient sustainable Li-ion anode materials. Eng. Sci. 17, 195–203 (2022). https://doi.org/10.30919/es8d608

    Article  Google Scholar 

  20. Jacob, J., Haponiuk, J.T., Thomas, S., Gopi, S.: Biopolymer based nanomaterials in drug delivery systems: a review. Mater. Today Chem. 9, 43–55 (2018). https://doi.org/10.1016/j.mtchem.2018.05.002

    Article  Google Scholar 

  21. Kingsley, J.D., Dou, H., Morehead, J., Rabinow, B., Gendelman, H.E., Destache, C.J.: Nanotechnology: a focus on nanoparticles as a drug delivery system. J. Neuroimmune Pharmacol. 1, 340–350 (2006). https://doi.org/10.1007/s11481-006-9032-4

    Article  Google Scholar 

  22. Sharma, R.A., Euden, S.A., Platton, S.L., Cooke, D.N., Shafayat, A., Hewitt, H.R., Marczylo, T.H., Morgan, B., Hemingway, D., Plummer, S.M., Pirmohamed, M.: Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin. Cancer Res. 10(20), 6847–6854 (2004). https://doi.org/10.1158/1078-0432.CCR-04-0744

    Article  Google Scholar 

  23. Tabanelli, R., Brogi, S., Calderone, V.: Improving curcumin bioavailability: current strategies and future perspectives. Pharmaceutics 13(10), 1715 (2021). https://doi.org/10.3390/pharmaceutics13101715

    Article  Google Scholar 

  24. Garg, J., Chiu, M.N., Krishnan, S., Tripathi, L.K., Pandit, S., Far, B.F., Jha, N.K., Kesari, K.K., Tripathi, V., Pandey, S., Gupta, P.K.: Applications of lignin nanoparticles for cancer drug delivery: an update. Mater. Lett. (2022). https://doi.org/10.1016/j.matlet.2021.131573

    Article  Google Scholar 

  25. Jurenka, J.S.: Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern. Med. Rev. 14(2), 141 (2009)

    Google Scholar 

  26. Cole, G.M., Teter, B., Frautschy, S.A.: Neuroprotective effects of curcumin. Mol. Targets Ther. Uses Curcumin Health Dis. (2007). https://doi.org/10.1007/978-0-387-46401-5_8

    Article  Google Scholar 

  27. Aggarwal, B.B., Gupta, S.C., Sung, B.: Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br. J. Pharmacol. 169(8), 1672–1692 (2013). https://doi.org/10.1111/bph.12131

    Article  Google Scholar 

  28. Kocaadam, B., Şanlier, N.: Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr. 57(13), 2889–2895 (2017). https://doi.org/10.1080/10408398.2015.1077195

    Article  Google Scholar 

  29. Dhumal, D.M., Kothari, P.R., Kalhapure, R.S., Akamanchi, K.G.: Self-microemulsifying drug delivery system of curcumin with enhanced solubility and bioavailability using a new semi-synthetic bicephalous heterolipid: in vitro and in vivo evaluation. RSC Adv. 5(110), 90295–90306 (2015). https://doi.org/10.1039/C5RA18112G

    Article  Google Scholar 

  30. **n, X., Judy, J.D., Sumerlin, B.B., He, Z.: Nano-enabled agriculture: from nanoparticles to smart nanodelivery systems. Environ. Chem. 17(6), 413–425 (2020). https://doi.org/10.1071/EN19254

    Article  Google Scholar 

  31. Sánchez-Hernández, E., Langa-Lomba, N., González-García, V., Casanova-Gascón, J., Martín-Gil, J., Santiago-Aliste, A., Torres-Sánchez, S., Martín-Ramos, P.: Lignin–chitosan nanocarriers for the delivery of bioactive natural products against wood-decay phytopathogens. Agronomy. 12(2), 461 (2022). https://doi.org/10.3390/agronomy12020461

    Article  Google Scholar 

  32. Del Buono, D., Luzi, F., Puglia, D.: Lignin nanoparticles: a promising tool to improve maize physiological, biochemical, and chemical traits. Nanomaterials 11(4), 846 (2021). https://doi.org/10.3390/nano11040846

    Article  Google Scholar 

  33. Salinas, F., Astete, C.E., Waldvogel, J.H., Navarro, S., White, J.C., Elmer, W., Tamez, C., Davis, J.A., Sabliov, C.M.: Effects of engineered lignin-graft-PLGA and zein-based nanoparticles on soybean health. NanoImpact. 23, p100329 (2021). https://doi.org/10.1016/j.impact.2021.100329

    Article  Google Scholar 

  34. Dai, L., Liu, R., Hu, L.Q., Zou, Z.F., Si, C.L.: Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol. ACS Sustain. Chem. Eng. 5(9), 8241–8249 (2017). https://doi.org/10.1021/acssuschemeng.7b01903

    Article  Google Scholar 

  35. Mishra, P.K., Ekielski, A.: A simple method to synthesize lignin nanoparticles. Colloids Interfaces. 3(2), 52 (2019). https://doi.org/10.3390/colloids3020052

    Article  Google Scholar 

  36. Richter, A.P., Bharti, B., Armstrong, H.B., Brown, J.S., Plemmons, D., Paunov, V.N., Stoyanov, S.D., Velev, O.D.: Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties. Langmuir. 32(25), 6468–6477 (2016). https://doi.org/10.1021/acs.langmuir.6b01088

    Article  Google Scholar 

  37. Azimvand, J., Didehban, K., Mirshokrai, S.A.: Preparation and characterization of lignin polymeric nanoparticles using the green solvent ethylene glycol: acid precipitation technology. BioResources 13(2), 2887–2897 (2018)

    Article  Google Scholar 

  38. Alqahtani, M.S., Alqahtani, A., Al-Thabit, A., Roni, M., Syed, R.: Novel lignin nanoparticles for oral drug delivery. J. Mater. Chem. B. 7(28), 4461–4473 (2019). https://doi.org/10.1039/C9TB00594C

    Article  Google Scholar 

  39. Shen, Q., Zhang, B., Xu, R., Wang, Y., Ding, X., Li, P.: Antioxidant activity in vitro of the selenium-contained protein from the Se-enriched bifidobacterium animalis 01. Anaerobe 16(4), 380–386 (2010). https://doi.org/10.1016/j.anaerobe.2010.06.006

    Article  Google Scholar 

  40. Oku, N., Namba, Y.: Glucuronate-modified, long-circulating liposomes for the delivery of anticancer agents. Methods Enzymol (2005). https://doi.org/10.1016/S0076-6879(05)91008-2

    Article  Google Scholar 

  41. Ranjan, J., Mandal, T., Mandal, D.D.: Mechanistic insight for DBP induced growth inhibition in Vigna radiata via oxidative stress and DNA damage. Chemosphere 263, 128062 (2021). https://doi.org/10.1016/j.chemosphere.2020.128062

    Article  Google Scholar 

  42. Wang, B., Sun, D., Wang, H.M., Yuan, T.Q., Sun, R.C.: Green and facile preparation of regular lignin nanoparticles with high yield and their natural broad-spectrum sunscreens. ACS Sustain. Chem. Eng. 7(2), 2658–2666 (2018). https://doi.org/10.1021/acssuschemeng.8b05735

    Article  Google Scholar 

  43. Worku, L.A., Bachheti, R.K., Tadesse, M.G., Bachheti, A., Ali, D., Kumar, G., Chaubey, K.K., Juyal, A., Almarzoug, M.H.: Synthesis of lignin nanoparticles from oxytenantheraabyssinica by nanoprecipitation method followed by ultrasonication for the nanocomposite application. J. King Saud Univ. Sci. 35(7), 102793 (2023). https://doi.org/10.1016/j.jksus.2023.102793

    Article  Google Scholar 

  44. Gupta, A.K., Mohanty, S., Nayak, S.K.: Synthesis, characterization and application of lignin nanoparticles (LNPs). Mater. Focus. 3(6), 444–454 (2014). https://doi.org/10.1166/mat.2014.1217

    Article  Google Scholar 

  45. Zou, T., Nonappa, N., Khavani, M., Vuorte, M., Penttila, P., Zitting, A., Valle-Delgado, J.J., Elert, A.M., Silbernagl, D., Balakshin, M., Sammalkorpi, M.: Experimental and simulation study of the solvent effects on the intrinsic properties of spherical lignin nanoparticles. J. Phys. Chem. B 125(44), 12315–12328 (2021). https://doi.org/10.1021/acs.jpcb.1c05319

    Article  Google Scholar 

  46. Luo, T., Wang, C., Ji, X., Yang, G., Chen, J., Janaswamy, S., Lyu, G.: Preparation and characterization of size-controlled lignin nanoparticles with deep eutectic solvents by nanoprecipitation. Molecules. 26(1), 218 (2021). https://doi.org/10.3390%2Fmolecules26010218

    Article  Google Scholar 

  47. Schubert, S., Delaney Jr, J.T., Schubert, U.S.: Nanoprecipitation and nanoformulation of polymers: From history to powerful possibilities beyond poly (lactic acid). Soft Matter. 7(5), 1581–1588 (2011)

    Article  Google Scholar 

  48. Clogston, J.D., Patri, A.K.: Zeta potential measurement. Charact. Nanopart. Intend. Drug Delivery (2011). https://doi.org/10.1007/978-1-60327-198-16

    Article  Google Scholar 

  49. Morena, A.G., Tzanov, T.: Antibacterial lignin-based nanoparticles and their use incomposite materials. Nanoscale Adv. 4(21), 4447–4469 (2022)

    Article  Google Scholar 

  50. Haripriyaa, M., Suthindhiran, K.: Pharmacokinetics of nanoparticles: current knowledge, future directions and its implications in drug delivery. Future J. Pharm. Sci. 9(1), 113 (2023). https://doi.org/10.1186/s43094-023-00569-y

    Article  Google Scholar 

  51. Liu, Y., Tan, J., Thomas, A., Ou-Yang, D., Muzykantov, V.R.: The shape of things to come: importance of design in nanotechnology for drug delivery. Therapeutic Delivery 3(2), 181–194 (2012)

    Article  Google Scholar 

  52. Sim, S., Wong, N.K.: Nanotechnology and its use in imaging and drug delivery. Biomedical Rep. 14(5), 1–9 (2021). https://doi.org/10.3892%2Fbr.2021.1418

    Article  Google Scholar 

  53. Bertolo, M.R., de Paiva, L.B.B., Nascimento, V.M., Gandin, C.A., Neto, M.O., Driemeier, C.E., andRabelo, S.C.:  Lignins from sugarcane bagasse: renewable source of nanoparticles as pickeringemulsions stabilizers for bioactive compounds encapsulation. Ind. Crops Prod. 140, 111591 (2019). https://doi.org/10.1016/j.indcrop.2019.111591

    Article  Google Scholar 

  54. Priyadarshinee, R., Kumar, A., Mandal, T., Dasguptamandal, D.: Improving the perspective of raw eucalyptus kraft pulp for industrial applications through autochthonous bacterial mediated delignification. Ind. Crops Prod. 74, 293–303 (2015). https://doi.org/10.1016/j.indcrop.2015.05.023

    Article  Google Scholar 

  55. Khaenamkaew, P., Manop, D., Tanghengjaroen, C., Ayuthaya, W.P.N.: Effect of temperature treatment on electrical property, crystal structures and lattice strains of precipitated CaCO3 nanoparticles. Mater. Res. (2020). https://doi.org/10.1590/1980-5373-MR-2019-0461

    Article  Google Scholar 

  56. Zhuang, J., Li, M., Pu, Y., Ragauskas, A.J., Yoo, C.G.: Observation of potentialcontaminants in processed biomass using fourier transform infrared spectroscopy. Appl. Sci. (2020). https://doi.org/10.3390/app10124345

    Article  Google Scholar 

  57. Gilca, I.A., Popa, V.I., Crestini, C.: Obtaining lignin nanoparticles by sonication. Ultrason. Sonochem. 23, 369–375 (2015). https://doi.org/10.1016/j.ultsonch.2014.08.021

    Article  Google Scholar 

  58. Akpakpan, A.E., Inam, E.J., Itoro, E.U.: Preparation, characterization and application of soda lignin and its ester derivatives as adsorbents in the adsorption of Pb2 + and Cd2 + from wastewater. J. Mater. Environ. Sci. 14, 82–96 (2023)

    Google Scholar 

  59. Gonçalves, A.R., Soto-Oviedo, M.A.: Production of chelating agents through the enzymatic oxidation of acetosolv sugarcane bagasse lignin. Appl. Biochem. Biotechnol. 98, 365–371 (2002)

    Article  Google Scholar 

  60. Patel, S., Chaki, S.H., Vinodkumar, P.C.: Thermal analysis of direct vapour transport technique grown tin selenide single crystals. Thermochim. Acta (2020). https://doi.org/10.1016/j.tca.2020.178614

    Article  Google Scholar 

  61. Košíková, B., Gregorova, A., Osvald, A., Krajčovičová, J.: Role of lignin filler in stabilization of natural rubber–based composites. J. Appl. Polym. Sci. 103(2), 1226–1231 (2007). https://doi.org/10.1002/app.24530

    Article  Google Scholar 

  62. Lapenna, S., Worth, A.: (2011) Analysis of the cramer classification scheme for oral systemic toxicity-implications for its implementation in toxtree. JRC Scientific and Technical Report EUR, 24898

  63. Fugita, R.A., Gálico, D.A., Guerra, R.B., Perpétuo, G.L., Treu-Filho, O., Galhiane, M.S., Mendes, R.A., Bannach, G.: Thermal behaviour of curcumin. Braz J. Therm. Anal. 1(1), 19–23 (2012)

    Google Scholar 

  64. Huanbutta, K., Sangnim, T.: Design and development of zero-order drug releasegastroretentive floating tablets fabricated by 3D printing technology. J. Drug DeliverynScience Technol. 52, 831–837 (2019). https://doi.org/10.1016/j.jddst.2019.06.004

    Article  Google Scholar 

  65. Chen, W.J., Yang, S., Zhang, Y., Wang, Y.Y., Yuan, T.Q., Sun, R.C.: Effect of alkaline preswelling on the structure of lignins from Eucalyptus. Sci. Rep. 7(1), 1–10 (2017). https://doi.org/10.1038/srep45752

    Article  Google Scholar 

  66. Fares, M.M., Salem, M.T.S.: Dissolution enhancement of curcumin via curcumin–prebiotic inulin nanoparticles. Drug Dev. Ind. Pharm. 41(11), 1785–1792 (2015)

    Article  Google Scholar 

  67. Gao, S., Tang, G., Hua, D., **ong, R., Duan, J.: Preparation of curcumin-loaded chitosan nanoparticles for improved therapeutic effects in treating lung cancer. J. Nanopart. Res. 21(2), 1–13 (2019). https://doi.org/10.1007/s11051-019-4481-8

    Article  Google Scholar 

  68. Chakrabarti, R., Rawat, P.S., Cooke, B.M., Coppel, R.L., Patankar, S.: Cellular effects of curcumin on Plasmodium falciparum include disruption of microtubules. PLoS One (2013). https://doi.org/10.1371/journal.pone.0057302

    Article  Google Scholar 

  69. Lee, J.H., Kim, K., **, X., Kim, T.M., Choi, I.G., Choi, J.W.: Formation of pure nanoparticles with solvent-fractionated lignin polymers and evaluation of their biocompatibility. Int. J. Biol. Macromol. 183, 660–667 (2021). https://doi.org/10.1016/j.ijbiomac.2021.04.149

    Article  Google Scholar 

  70. Jeong, H.J., Cha, J.Y., Choi, J.H., Jang, K.S., Lim, J., Kim, W.Y., Seo, D.C., Jeon, J.R.: One-pot transformation of technical lignins into humic-like plant stimulants through fenton-based advanced oxidation: accelerating natural fungus-driven humification. ACS Omega 3(7), 7441–7453 (2018). https://doi.org/10.1021/acsomega.8b00697

    Article  Google Scholar 

  71. Singh, J., Kumar, S., Alok, A., Upadhyay, S.K., Rawat, M., Tsang, D.C., Bolan, N., Kim, K.H.: The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. J. Clean. Prod. 214, 1061–1070 (2019). https://doi.org/10.1016/j.jclepro.2019.01.018

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Institute of Technology Durgapur, Durgapur, West Bengal, Bharat, for the funding. The author would also like to thank the Department of Central Scientific Services, Indian Association for the Cultivation of Science (IACS), for enabling them to utilize the DLS and Zeta potential facilities. The author would also like to thank the Department of Bose Institute for allowing them to utilize the FTIR facility and the Centre of Excellence, National Institute of Technology Durgapur for allowing them to use the FESEM facility. The author would also like to thank the S.N. Bose National Centre for Basic Sciences for enabling them to utilize the TG/DTA facility. The author would also like to thank Prof. Sudip Chattopadhyay, NIT Durgapur for the facility of his plant tissue culture lab for plant bioassay.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Gaurav Singh: Methodology, experimental work, investigation, software, writing—original draft, data curation. Kunal Das : Experimental work, investigation. Dalia Dasgupta Mandal: Conceptualization, methodology, supervision, validation, writing—review & editing.

Corresponding author

Correspondence to Dalia Dasgupta Mandal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. All the authors declare that there are no conflict of interest existing.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 40.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Das, K. & Mandal, D.D. Valorization of Kraft Lignin via Its Conversion into Lignin Nanoparticles to Act Both as DDS and Biostimulator for Plant. Waste Biomass Valor 15, 4823–4838 (2024). https://doi.org/10.1007/s12649-024-02479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-024-02479-3

Keywords

Navigation