Log in

Valorization of Black Carrot Industrial Residues for the Anthocyanin Pigment Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Industrial residues from black carrot were valorized for using them as a raw material to produce anthocyanin pigments, which were obtained as concentrated extracts and microcapsules.

The anthocyanins were extracted by citric, tartaric, and lactic acids to prevent degradation. Concentrated extracts were obtained by 80% of water reduction, whereas microcapsules were prepared by spray drying using gum arabic as a carrier agent.

The effect of pH and temperature on the anthocyanin content and coloration was assessed. In addition, the shelf-life of pigment products was determined for 360 days of storage at 4 and 20 °C, measuring anthocyanins concentration, color, and total phenolic retention.

Black carrot residues resulted in an excellent material for pigments products preparation. Concentrated extracts reached up to 7000 mg/L of anthocyanins, high antioxidant activity, and dark red color. The obtained products showed high color stability at 2–7 pH range and temperature stress from 20 to 90 °C. Furthermore, the concentrated extract showed 80% of anthocyanins preservation and 90% of color retention after storage for 360 days at 4 °C. Anthocyanin microcapsules exhibited 280 mg/L of anthocyanins with pink, red coloration, maintaining 50% of anthocyanins after storage for 180 days at 20 °C.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The manuscript contains all data generated or analysed in this study.

Abbreviations

A:

Absorbance

A0 :

Anthocyanins absorbance at initial conditions, time=0

At :

Anthocyanins absorbance at subjected conditions t= t

a0 :

Positive=redness/negative=greenness of the control sample at initial conditions

a*:

Positive=redness/negative=greenness at final conditions

ABTS:

2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid

b0 :

Positive=yellowness/negative=blueness of the control sample at initial conditions and final conditions

b*:

Positive=yellowness/negative=blueness

C:

Citric acid

CC:

Concentrated extracts from black carrot residues by citric acid

CD:

Color density

CR%:

Percentage of color retention

CRE:

Extract from black carrot residues by citric acid

CWE:

Extract from fresh black carrot by citric acid

D:

Pathlength, the distance the light travels through the sample

DPPH:

1,1-diphenyl 2-picrylhydrazyl

Dw:

Dry weight

Ε:

Molar extinction coefficient

FD:

Dilution factor

Fw:

Fresh weight

GAE:

Galic acid

KCl:

Potassium chloride

HCl:

Chloride acid

L:

Lactic acid

L0 :

Lightness/darkness; 0–100 of the control sample at initial conditions

L*:

Lightness/darkness; 0–100 at final conditions

λ max :

Maximum wavelength

LRE:

Anthocyanin extract from black carrot residues by lactic acid

LWE:

Anthocyanin extract from fresh black carrot by citric acid

MAC:

Monomeric anthocyanin content

MGA:

Gum arabic microcapsules from black carrot residues

MW:

Molecular weight

PC:

Polymeric color

PPC%:

Percentage of polymeric color

T:

Tartaric acid

TAC:

Total anthocyanin content

TCD:

Total color difference

TE (TROLOX):

6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid

TPC:

Total phenols content

TRE:

Anthocyanin extract from black carrot residues by tartaric acid

TWE:

Extract from fresh black carrot by citric acid

References

  1. Akhtar, S., Rauf, A., Imran, M., Saleem, Q., Riaz, M., Mubarak, M.S.: Black carrot (Daucus carota L.), dietary and health promoting perspectives of its polyphenols: A review. Trends Food Sci. Tech. (2017). https://doi.org/10.1016/j.tifs.2017.05.004

    Article  Google Scholar 

  2. Tan, C., Dadmohammadi, Y., Lee, M., Abbaspourrad, A.: Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins. Compr. Food Sci. Food Saf. (2021). https://doi.org/10.1111/1541-4337.12772

    Article  Google Scholar 

  3. Agcam, E., Akyıldız, A., Balasubramaniam, V.M.: Optimization of anthocyanins extraction from Black Carrot Pomace with Thermosonication. Food Chem. (2017). https://doi.org/10.1016/j.foodchem.2017.05.098

    Article  Google Scholar 

  4. Batool, F., Iqbal, N., Azeem, M., Adeel, S., Ali, M.: Sustainable dyeing of Cotton Fabric Using Black Carrot (Daucus carota L.) Plant Residue as a source of natural colorant. Pol. J. Environ. Stud. (2019). https://doi.org/10.15244/pjoes/93712

    Article  Google Scholar 

  5. Polat, S., Guclu, G., Kelebek, H., Keskin, M., Selli, S.: Comparative elucidation of colour, volatile and phenolic profiles of black carrot (Daucus carota L.) pomace and powders prepared by five different drying methods. Food Chem. (2022). https://doi.org/10.1016/j.foodchem.2021.130941

    Article  Google Scholar 

  6. Cortez, R., Luna-Vital, D.A., Margulis, D., Gonzalez de Mejía, E.: Natural pigments: Stabilization methods of anthocyanins for Food Applications. Compr. Rev. Food Sci. Food Saf. (2017). https://doi.org/10.1111/1541-4337.12244

    Article  Google Scholar 

  7. Fang, J., Luo, Y., Yuan, K., Guo, Y., **, S.: Preparation and evaluation of an encapsulated anthocyanin complex for enhancing the stability of anthocyanin. LWT. (2020). https://doi.org/10.1016/j.lwt.2019.108543

    Article  Google Scholar 

  8. Sharif, N., Khoshnoudi-Nia, S., Mahdi, S.: Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Res. Int. (2020). https://doi.org/10.1016/j.foodres.2020.109077

    Article  Google Scholar 

  9. Gizir, A., Turker, N., Erdem, A.: Pressurized acidified water extraction of black carrot [Daucus carota ssp. Sativus var. Atrorubens Alef.] Anthocyanins. Eur. Food Res. Technol. (2008). https://doi.org/10.1007/s00217-006-0546-z

    Article  Google Scholar 

  10. Espinosa-Acosta, G., Ramos-Jacques, A.L., Molina, G., Maya-Cornejo, J., Esparza, R., Hernandez-Martinez, A., Sánchez-González, I.M.: Stability analysis of anthocyanins using alcoholic extracts from black carrot (Daucus Carota ssp. Sativus var. atrorubens Alef). Molecules (2018). https://doi.org/10.3390/molecules23112744

    Article  Google Scholar 

  11. Nistor, M., Diaconeasa, Z., Frond, A., Stirbu, I.: Comparative efficiency of different solvents for the anthocyanins extraction from chokeberries and black carrots, to preserve their antioxidant activity. Chem. Pap. (2021). https://doi.org/10.1007/s11696-020-01344-6

    Article  Google Scholar 

  12. Chung, C., Rojanasasithara, T., Mutilangi, W., McClements, D.: Enhancement of colour stability of anthocyanins in model beverages by gum arabic addition. Food Chem. (2016). https://doi.org/10.1016/j.foodchem.2016.01.051

    Article  Google Scholar 

  13. Chung, C., Rojanasasithara, T., Mutilangi, W., McClements, D.: Stability improvement of natural food colors: Impact of amino acid and peptide addition on anthocyanin stability in model beverages. Food Chem. (2017). https://doi.org/10.1016/j.foodchem.2016.09.087

    Article  Google Scholar 

  14. Azman, E.M., Yusof, N., Chatzifragkou, A., Charalampopoulos, D.: Stability Enhancement of Anthocyanins from Blackcurrant (Ribes Nigrum L.) Pomace through intermolecular copigmentation. Molecules. (2022). https://doi.org/10.3390/molecules27175489

    Article  Google Scholar 

  15. Arroyo-Maya, I.J., Campos-Terán, J., Hernández-Arana, A., McClements, D.J.: Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins. Food Chem. (2016). https://doi.org/10.1016/j.foodchem.2016.06.105

    Article  Google Scholar 

  16. Almeida, D.P., Mota, A., Basílio, E., Furtado, E., Ribeiro, F., Ribeirio, M., Almeida, N., Tatagiba, C.: Increased thermal stability of anthocyanins at pH 4.0 by guar gum in aqueous dispersions in a double emulsion W/O/W. Int. J. Biol. Macromol. (2018). https://doi.org/10.1016/j.ijbiomac.2018.05.219

    Article  Google Scholar 

  17. Moser, P., De Souza, R., Nicoletti, T.: Spray-drying of grape juice from hybrid cv. BRS Violeta: Microencapsulation of anthocyanins using protein/maltodextrin blends as drying aid. J. Food Process. Preserv. (2016). https://doi.org/10.1111/jfpp.12852

    Article  Google Scholar 

  18. Cai, X., Du, X., Cui, D., Wang, X., Yang, Z., Zhu, G.: Improvement of stability of blueberry anthocyanins by carboxymethyl starch/xanthan gum combinations microencapsulation. Food Hydrocoll. (2019). https://doi.org/10.1016/j.foodhyd.2019.01.034

    Article  Google Scholar 

  19. Wang, Y., Zhang, C., Dong, B., Huang, Y., Bao, Z., Zhao, H.: Relationship between Pigment Composition and Peel Color for the Fruit of Chinese Flame Tree. J. Am. Soc. Hortic. Sci. (2018). https://doi.org/10.21273/JASHS04332-18

    Article  Google Scholar 

  20. Giusti, M.M., Wrolstad, R.: Characterization and measurement of anthocyanins by UV-Visible spectroscopy. Curr. Protoc. Food Anal. Chem. (2001). https://doi.org/10.1002/0471142913.faf0102s00

    Article  Google Scholar 

  21. Roy, M., Koide, M., Rao, T., Okubo, T., Ogasawara, Y., Juneja, L.: ORAC and DPPH assay comparison to assess antioxidant capacity of tea infusions: Relationship between total polyphenol and individual catechin content. Int. J Food Sci Nutr. (2010). https://doi.org/10.3109/09637480903292601

    Article  Google Scholar 

  22. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. (1999). https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  Google Scholar 

  23. Singleton, V., Orthofer, R., Lamuela-Raventos, R.: Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. (1999). https://doi.org/10.1016/S0076-6879(99)99017-1

    Article  Google Scholar 

  24. Yawadio, R., Morita, N.: Color enhancing effect of carboxylic acids on anthocyanins. Food Chem. (2007). https://doi.org/10.1016/j.foodchem.2006.12.066

    Article  Google Scholar 

  25. Lv, X., Li, L., Lu, X., Wang, W., Sun, J., Liu, Y., Mu, J., Ma, Q., Wang, J.: Effects of organic acids on color intensification, thermodynamics, and copigmentation interactions with anthocyanins. Food Chem. (2022). https://doi.org/10.1016/j.foodchem.2022.133691

    Article  Google Scholar 

  26. Tan, J., Han, Y., Han, B., Qi, X., Cai, X., Ge, S., Xue, H.: Extraction and purification of anthocyanins: A review. J. Agri Food Res. (2022). https://doi.org/10.1016/j.jafr.2022.100306

    Article  Google Scholar 

  27. Algarra, M., Fernandes, A., Mateus, N., de Freitas, V., Esteves, J., Casado, J.: Anthocyanin profile and antioxidant capacity of black carrots (Daucus carota L. ssp. sativus var. Atrorubens Alef.) From Cuevas Bajas. Spain J. Food Compos. Anal. (2014). https://doi.org/10.1016/j.jfca.2013.11.005

    Article  Google Scholar 

  28. Montilla, E.C., Arzaba, M., Hillebrand, S., Winterhalter, P.: Anthocyanin composition of black carrot (Daucus carota ssp. sativus var. Atrorubens Alef.) Cultivars Antonina, Beta Sweet, Deep Purple, and Purple Haze. J. Agric. Food Chem. (2011). https://doi.org/10.1021/jf104724k

    Article  Google Scholar 

  29. Lee, J., Koo, N., Min, D.: Reactive oxygen species, aging, and Antioxidative Nutraceuticals. Compr. Rev. Food Sci. Food Saf. (2004). https://doi.org/10.1111/j.1541-4337.2004.tb00058.x

    Article  Google Scholar 

  30. Ochoa, S., Durango-Zuleta, M., Osorio-Tobón, J.: Techno-economic evaluation of the extraction of anthocyanins from purple yam (Dioscorea alata) using ultrasound assisted extraction and conventional extraction processes. Food Bioprod. Process. (2020). https://doi.org/10.1016/j.fbp.2020.04.007

    Article  Google Scholar 

  31. Muselik, J., García-Alonso, M., Martín-López, M., Žemlička, M., Rivas-Gonzalo, J.: Measurement of antioxidant activity of wine catechins, procyanidins, anthocyanins. Int. J. Mol. Sci. (2007). https://doi.org/10.3390/i8080797

    Article  Google Scholar 

  32. Stefanuţ, M., Căta, A., Pop, R., Moşoarcă, C., Zamfir, A., Anthocyanins: HPLC DAD and MS characterization, total phenolics, and antioxidant activity of some berries extracts. Anal. Lett. (2011). https://doi.org/10.1080/00032719.2011.582550

    Article  Google Scholar 

  33. Pina, F., Oliveira, J., de Freitas, V.: Anthocyanins and derivatives are more than flavylium cations. Tetrahedron. (2015). https://doi.org/10.1016/j.tet.2014.09.051

    Article  Google Scholar 

  34. Tang, B., He, Y., Liu, J., Zhang, J., Li, J., Zhou, J., Ye, Y., Wang, J., Wang, X.: Kinetic investigation into pH-dependent color of anthocyanin and its sensing performance. Dyes Pigm. (2019). https://doi.org/10.1016/j.dyepig.2019.107643

    Article  Google Scholar 

  35. Mahdavi, S.A., Jafari, S.M., Ghorbani, M., Assadpoor, E.: Spray-drying microencapsulation of anthocyanins by natural biopolymers: A review. Dry. Technol. (2014). https://doi.org/10.1080/07373937.2013.839562

    Article  Google Scholar 

  36. Oliveira, J., Azevedo, J., Seco, A., Mendoza, J., Basilio, N., de Freitas, V., Pina, F.: Copigmentation of anthocyanins with copigments possessing an acid-base equilibrium in moderately acidic solutions. Dyes Pigm. (2021). https://doi.org/10.1016/j.dyepig.2021.109438

    Article  Google Scholar 

  37. Oancea, S.: A review of the current knowledge of thermal stability of anthocyanins and approaches to their stabilization to heat. Antioxidants (2021). https://doi.org/10.3390/antiox10091337

    Article  Google Scholar 

  38. Torskangerpoll, K., Andersen, Ø.M.: Colour stability of anthocyanins in aqueous solutions at various pH values. Food Chem. (2005). https://doi.org/10.1016/j.foodchem.2004.03.002

    Article  Google Scholar 

  39. Sadilova, E., Carle, R., Stintzing, F.: Thermal degradation of anthocyanin and impact on color and in vitro antioxidant capacity. Mol. Nutr. Food Res. (2007). https://doi.org/10.1002/mnfr.200700179

    Article  Google Scholar 

  40. Zhao, C.-L., Yu, Y.-Q., Chen, Z.-J., Wen, Z.-J., Wei, F.-G., Zheng, Q., Wang, C.-D., **ao, X.-L.: Stability-increasing effects of anthocyanin glycosyl acylation. Food Chem. (2016). https://doi.org/10.1016/j.foodchem.2016.07.073

    Article  Google Scholar 

  41. Gençdağ, E., Özdemir, E., Demirci, K., Görgüç, A., Yilmaz, F.: Copigmentation and stabilization of anthocyanins using organic molecules and encapsulation techniques. Curr. Plant. Biol. (2022). https://doi.org/10.1016/j.cpb.2022.100238

    Article  Google Scholar 

  42. He, W., Zeng, M., Chen, J., Jiao, Y., Niu, F., Tao, G., Zhang, S., Qin, F., He, Z.: Identification and quantitation of anthocyanins in Purple-Fleshed Sweet Potatoes cultivated in China by UPLC-PDA and UPLC-QTOF-MS/MS. J. Agric. Food Chem. (2016). https://doi.org/10.1021/acs.jafc.5b04878

    Article  Google Scholar 

  43. Yusof, Z., Ramasamy, S., Mahmood, N., Yaacob, J.: Vermicompost Supplementation Improves the Stability of Bioactive Anthocyanin and Phenolic Compounds in Clinacanthus nutans Lindau. Molecules (2018). https://doi.org/10.3390/molecules23061345

    Article  Google Scholar 

  44. Pinheiro, C.P., Moreira, L., Alves, S., Cadaval, T., Pinto, L.: Anthocyanins concentration by adsorption onto chitosan and alginate beads: Isotherms, kinetics and thermodynamics parameters. Int. J. Biol. Macromol. (2021). https://doi.org/10.1016/j.ijbiomac.2020.10.250

    Article  Google Scholar 

  45. Ersus, S., Yurdagel, U.: Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. J. Food Eng. (2007). https://doi.org/10.1016/j.jfoodeng.2006.07.009

    Article  Google Scholar 

  46. Murali, S., Kar, A., Mohapatra, D., Kalia, P.: Encapsulation of black carrot juice using spray and freeze drying. Food Sci. Technol. Int. (2015). https://doi.org/10.1177/1082013214557843

    Article  Google Scholar 

  47. Idham, Z., Muhamad, I., Sarmidi, M.: Degradation kinetics and color stability of spray-dried encapsulated anthocanins from Hisbiscus Sabdariffa L. J. Food Process. Eng. (2011). https://doi.org/10.1111/j.1745-4530.2010.00605.x

    Article  Google Scholar 

  48. Zhao, L., Pan, F., Mehmood, A., Zhang, H., Rehman, A., Li, J., Hao, S., Wang, C.: Improved color stability of anthocyanins in the presence of ascorbic acid with the combination of rosmarinic acid and xanthan gum. Food Chem. (2021). https://doi.org/10.1016/j.foodchem.2021.129317

    Article  Google Scholar 

  49. Terefere, N.S., Netzel, G.A., Netzel, M.E.: Copigmentation with sinapic acid improves the stability of anthocyanins in high-pressure-processed strawberry purees. J. Chem. (2019). https://doi.org/10.1155/2019/3138608

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Consejo Nacional de Humanidades Ciencia y Tecnología (CONAHCYT) for the scholarship granted to E. Hernández-Acosta and E. López-Solorzano to study Environmental Sciences PhD, within the installations of the ‘Tecnológico Nacional de México-Toluca’ (No. 788926).

Funding

This study was supported by the Tecnológico Nacional de México (TECNM-11342.21-P and Consejo Nacional de Humanidades, Ciencias y Tecnologías (CF-2023-G-859).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Muro.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethical Approval and Consent to Participate

Not applicable.

Novelty Statement

The valorization of black carrot industrial residues related to Deep purple variety resulted in a high content of anthocyanins, constituting a potential raw material of reuse to produce a line of food pigments as concentrated extracts and microcapsules.

Anthocyanin concentrated extracts reached up to 7000 mg/L of anthocyanins and dark red color, showing 80% of anthocyanins preservation and 90% of color retention during storage for 360 days at 4°C. Color stability was observed at 2-7 pH range and temperature stress from 20 to 90°C.

Anthocyanin microcapsules exhibited 280 mg/L of anthocyanins with pink, red coloration, maintaining 50% of anthocyanins during storage for 180 days at 20 °C. Color stability was observed at 2-7 pH range and temperature stress from 20 to 75°C.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Acosta, E., Muro, C., Guadarrama-Lezama, A.Y. et al. Valorization of Black Carrot Industrial Residues for the Anthocyanin Pigment Production. Waste Biomass Valor 15, 4071–4086 (2024). https://doi.org/10.1007/s12649-024-02424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-024-02424-4

Keywords

Navigation