Log in

Evaluation of the Effect of Adding Rock Phosphate to Anaerobic Digestion of Waste Chicken Feathers for Biogas Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The effect of adding different concentrations of Rock Phosphate (RP) to the anaerobic digestion of Chicken Feather (CF) on yield kinetics and biogas production was investigated in the present research work. Nine identical batch digesters (Labeled A–I) were employed in the present experimental investigation. Digester A contained only CF (20 g) and remaining each digester contained 20 g of CF and varying RP concentration from 2.5 to 20% based on the total weight of CF. The cumulative biogas generation from digesters having the combinations CF:0% RP, CF:2.5% RP, CF:5% RP, CF:7.5% RP, CF:10% RP, CF:12.5% RP, CF:15% RP, CF:17.5% RP, and CF:20% RP are 268, 952, 1098, 968, 970, 882, 875, 832, 838 ml/20 g CF respectively. It was found from the Modified Gompertz Model that the addition of RP to anaerobic digestion of waste CF had a positive effect of 252.71%, 232.35%, and 1.68% on the total amount of biogas generated (A), optimum specific biogas generation (μm) and latency (λ) respectively over untreated CF. The addition of RP to the anaerobic digestion of leftover CF is a very simple, practical, and efficient process that produced biogas in a beneficial way.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data will be made available if required.

Abbreviations

AD:

Anaerobic Digestion

CF:

Chicken Feathers

RP:

Rock Phosphate

GC–MS:

Gas Chromatography–Mass Spectrometry

BD:

Becton Dickinson

MSD:

Mass Selective Detector

References

  1. IRENA (2022), Renewable energy auctions: Southeast Asia, International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/Publications/2022/Dec/Renewable-energy-auctions-Southeast-Asia. Accessed 21 Jan 2023

  2. Saba, M., Khan, A., Ali, H., Bibi, A., Gul, Z., Khan, A., Khan, S.: Microbial pretreatment of chicken feather and its co-digestion with rice husk and green grocery waste for enhanced biogas production. Front. Microbiol. (2022). https://doi.org/10.3389/fmicb.2022.792426

    Article  Google Scholar 

  3. Tesfaye, T., Sithole, B., Ramjugernath, D.: Valorisation of waste chicken feathers: optimisation of decontamination and pre-treatment with bleaching agents using response surface methodology. Sustain. Chem. Pharm. 8, 21–37 (2018). https://doi.org/10.1016/j.scp.2018.02.003

    Article  Google Scholar 

  4. Maliha, A., Abu-Hijleh, B.: A review on the current status and post-pandemic prospects of third-generation biofuels. Energy Syst. (2022). https://doi.org/10.1007/s12667-022-00514-7

    Article  Google Scholar 

  5. Raheem, A., Prinsen, P., Vuppaladadiyam, A.K., Zhao, M., Luque, R.: A review on sustainable microalgae based biofuel and bioenergy production: recent developments. J. Clean. Prod. 181, 42–59 (2018). https://doi.org/10.1016/j.jclepro.2018.01.125

    Article  Google Scholar 

  6. Mohan, K., Maheswarappa, N.B., Banerjee, R.: Exploring the dynamics of women consumer preference, attitude and behaviour towards meat and meat products consumption in India. Meat Sci. 193, 108926 (2022). https://doi.org/10.1016/j.meatsci.2022.108926

    Article  Google Scholar 

  7. Schommer, V.A., Wenzel, B.M., Daroit, D.J.: Anaerobic co-digestion of swine manure and chicken feathers: effects of manure maturation and microbial pretreatment of feathers on methane production. Renew. Energy 152, 1284–1291 (2020). https://doi.org/10.1016/j.renene.2020.01.154

    Article  Google Scholar 

  8. Tesfaye, T., Sithole, B., Ramjugernath, D.: Valorisation of chicken feathers: a review on recycling and recovery route—current status and future prospects. Clean Technol. Environ. Policy 19, 2363–2378 (2017). https://doi.org/10.1007/s10098-017-1443-9

    Article  Google Scholar 

  9. Tesfaye, T., Sithole, B., Ramjugernath, D., Chunilall, V.: Valorisation of chicken feathers: characterisation of physical properties and morphological structure. J. Clean. Prod. 149, 349–365 (2017). https://doi.org/10.1016/j.jclepro.2017.02.112

    Article  Google Scholar 

  10. EPA Basic Information about Landfill Gas EPA (United States Environmental Protection Agency. https://www.epa.gov/lmop/basic-information-about-landfill-gas. Accessed 28 Jan 2023

  11. Patinvoh, R.J., Feuk-Lagerstedt, E., Lundin, M., SárváriHorváth, I., Taherzadeh, M.J.: Biological pretreatment of chicken feather and biogas production from total broth. Appl. Biochem. Biotechnol. 180, 1401–1415 (2016). https://doi.org/10.1007/s12010-016-2175-8

    Article  Google Scholar 

  12. **a, Y., Massé, D.I., McAllister, T.A., Beaulieu, C., Ungerfeld, E.: Anaerobic digestion of chicken feather with swine manure or slaughterhouse sludge for biogas production. Waste Manage. 32(3), 404–409 (2012). https://doi.org/10.1016/j.wasman.2011.10.024

    Article  Google Scholar 

  13. Yang, S., Luo, F., Yan, J., Zhang, T., **an, Z., Huang, W., Huang, L.: Biogas production of food waste with in-situ sulfide control under high organic loading in two-stage anaerobic digestion process: strategy and response of microbial community. Biores. Technol. 373, 128712 (2023). https://doi.org/10.1016/j.biortech.2023.128712

    Article  Google Scholar 

  14. Forgács, G., Alinezhad, S., Mirabdollah, A., Feuk-Lagerstedt, E., Horváth, I.S.: Biological treatment of chicken feather waste for improved biogas production. J. Environ. Sci. 23(10), 1747–1753 (2011). https://doi.org/10.1016/S1001-0742(10)60648-1

    Article  Google Scholar 

  15. Forgács, G., Lundin, M., Taherzadeh, M.J., SárváriHorváth, I.: Pretreatment of chicken feather waste for improved biogas production. Appl. Biochem. Biotechnol. 169, 2016–2028 (2013). https://doi.org/10.1007/s12010-013-0116-3

    Article  Google Scholar 

  16. Coward-Kelly, G., Chang, V.S., Agbogbo, F.K., Holtzapple, M.T.: Lime treatment of keratinous materials for the generation of highly digestible animal feed: 1 chicken feathers. Bioresour. Technol. 97(11), 1337–1343 (2006). https://doi.org/10.1016/j.biortech.2005.05.021

    Article  Google Scholar 

  17. Chemical composition of Premium Rock Phosphate (2023). Accessed 10 October 2023 https://www.katyayaniorganics.com/product/premium-rock-phosphate/

  18. Zaghloul, T.I., Embaby, A.M., Elmahdy, A.R.: Biodegradation of chicken feathers waste directed by Bacillus subtilis recombinant cells: scaling up in a laboratory scale fermentor. Bioresour. Technol. 102(3), 2387–2393 (2011). https://doi.org/10.1016/j.biortech.2010.10.106

    Article  Google Scholar 

  19. Kumar, E. V., Srijana, M., Chaitanya, K., Reddy, Y., & Reddy, G. (2011). Biodegradation of poultry feathers by a novel bacterial isolate Bacillus altitudinis GVC11. https://nopr.niscpr.res.in/bitstream/123456789/12988/1/IJBT%2010%284%29%20502-507.pdf

  20. Forgács, G., Niklasson, C., SárváriHorváth, I., Taherzadeh, M.J.: Methane production from feather waste pretreated with Ca (OH) 2: process development and economical analysis. Waste Biomass Valorization 5, 65–73 (2014). https://doi.org/10.1007/s12649-013-9221-3

    Article  Google Scholar 

  21. Salminen, E., Einola, J., Rintala, J.: The methane production of poultry slaughtering residues and effects of pre-treatments on the methane production of poultry feather. Environ. Technol. 24(9), 1079–1086 (2003). https://doi.org/10.1080/09593330309385648

    Article  Google Scholar 

  22. Unuofin, F.O., Siswana, M.: Enhancing organic waste decomposition with addition of phosphorus and calcium through different sources. Int. J. Recycl. Org. Waste Agric. 8, 139–150 (2019). https://doi.org/10.1007/s40093-018-0239-1

    Article  Google Scholar 

  23. Owamah, H.I., Alfa, M.I., Onokwai, A.O.: Preliminary evaluation of the effect of chicken feather with no major pre-treatment on biogas production from horse dung. Environ. Nanotechnol. Monit. Manag. 14, 100347 (2020). https://doi.org/10.1016/j.enmm.2020.100347

    Article  Google Scholar 

  24. Tesfaye, T., Sithole, B., Ramjugernath, D., Chunilall, V.: Valorisation of chicken feathers: characterisation of chemical properties. Waste Manage. 68, 626–635 (2017). https://doi.org/10.1016/j.wasman.2017.06.050

    Article  Google Scholar 

  25. Casallas-Ojeda, M., Meneses-Bejarano, S., Urueña-Argote, R., Marmolejo-Rebellón, L.F., Torres-Lozada, P.: Techniques for quantifying methane production potential in the anaerobic digestion process. Waste Biomass Valorization (2021). https://doi.org/10.1007/s12649-021-01636-2

    Article  Google Scholar 

  26. Srisowmeya, G., Chakravarthy, M., Bakshi, A., Devi, G.N.: Improving process stability, biogas production and energy recovery using two-stage mesophilic anaerobic codigestion of rice wastewater with cow dung slurry. Biomass Bioenerg. 152, 106184 (2021). https://doi.org/10.1016/j.biombioe.2021.106184

    Article  Google Scholar 

  27. Tripathi, S.K., Kaur, D., Bhardwaj, N.K., Pathak, P., Kumar, S.: Improving biogas production by co-digestion of banana stem juice with agro-based material washings and digestate along with microbial culture. Waste Biomass Valorization 12(3), 1385–1393 (2021). https://doi.org/10.1007/s12649-020-01101-6

    Article  Google Scholar 

  28. Kovács, E., Szűcs, C., Farkas, A., Szuhaj, M., Maróti, G., Bagi, Z., Kovács, K.L.: Pretreatment of lignocellulosic biogas substrates by filamentous fungi. J. Biotechnol. 360, 160–170 (2022). https://doi.org/10.1016/j.jbiotec.2022.10.013

    Article  Google Scholar 

  29. Mukherjee, A.K., Rai, S.K., Bordoloi, N.K.: Biodegradation of waste chicken-feathers by an alkaline β-keratinase (Mukartinase) purified from a mutant Brevibacillus sp. strain AS-S10-II. Int. Biodeterior. Biodegrad. 65(8), 1229–1237 (2011). https://doi.org/10.1016/j.ibiod.2011.09.007

    Article  Google Scholar 

  30. Pasalari, H., Esrafili, A., Rezaee, A., Gholami, M., Farzadkia, M.: Electrochemical oxidation pretreatment for enhanced methane potential from landfill leachate in anaerobic co-digestion process: performance, Gompertz model, and energy assessment. Chem. Eng. J. 422, 130046 (2021). https://doi.org/10.1016/j.cej.2021.130046

    Article  Google Scholar 

  31. Fitamo, T., Boldrin, A., Boe, K., Angelidaki, I., Scheutz, C.: Co-digestion of food and garden waste with mixed sludge from wastewater treatment in continuously stirred tank reactors. Biores. Technol. 206, 245–254 (2016). https://doi.org/10.1016/j.biortech.2016.01.085

    Article  Google Scholar 

  32. Sobucki, L., Ramos, R.F., Gubiani, E., Brunetto, G., Kaiser, D.R., Daroit, D.J.: Feather hydrolysate as a promising nitrogen-rich fertilizer for greenhouse lettuce cultivation. Int. J. Recycl. Org. Waste Agric. 8, 493–499 (2019). https://doi.org/10.1007/s40093-019-0281-7

    Article  Google Scholar 

  33. Ma, H., Guo, Y., Qin, Y., Li, Y.Y.: Nutrient recovery technologies integrated with energy recovery by waste biomass anaerobic digestion. Biores. Technol. 269, 520–531 (2018). https://doi.org/10.1016/j.biortech.2018.08.114

    Article  Google Scholar 

  34. Goswami, R., Chattopadhyay, P., Shome, A., Banerjee, S.N., Chakraborty, A.K., Mathew, A.K., Chaudhury, S.: An overview of physico-chemical mechanisms of biogas production by microbial communities: a step towards sustainable waste management. 3 Biotech 6, 1–12 (2016). https://doi.org/10.1007/s13205-016-0395-9

    Article  Google Scholar 

  35. González, J., Sánchez, M.E., Gómez, X.: Enhancing anaerobic digestion: the effect of carbon conductive materials. C 4(4), 59 (2018). https://doi.org/10.3390/c4040059

    Article  Google Scholar 

  36. Chang, H.C., Chou, P.Y., Cheng, M.P., Hsiao, T.H., Lo, K.Y., Wang, S.L.: Phosphorus conversion during anaerobic digestion of high-calcium chicken manures and phosphorus recovery as struvite. J. Environ. Chem. Eng. 10(3), 107615 (2022). https://doi.org/10.1016/j.jece.2022.107615

    Article  Google Scholar 

  37. Carliell-Marquet, C.M., Wheatley, A.D.: Measuring metal and phosphorus speciation in P-rich anaerobic digesters. Water Sci. Technol. 45(10), 305–312 (2002). https://doi.org/10.2166/wst.2002.0360

    Article  Google Scholar 

  38. Mancipe-Jiménez, D.C., Costa, C., Márquez, M.C.: Methanogenesis inhibition by phosphorus in anaerobic liquid waste treatment. Waste Treat. Recover. 2(1), 1–8 (2017). https://doi.org/10.1515/lwr-2017-0001

    Article  Google Scholar 

  39. De Mello Alves, S., de Melo, C. F., & Prakasan, K. (1984). Effect of the addition of phosphate rocks in the biogas and biofertilizer production from the cattle wastes of bovine and buffaloes; Efeito da adicao de rochas fosfatadas na producao de biogas e biofertilizante a partir de dejetos de bovinos e bubalinos. https://www.osti.gov/etdeweb/biblio/485420

  40. Diggle, S., Whiteley, M.: Microbe Profile: Pseudomonas aeruginosa:opportunistic pathogen and lab rat. Microbiology 166(1), 30–33 (2020). https://doi.org/10.1099/mic.0.000860

    Article  Google Scholar 

  41. Papadopoulos, G., Chouliaras, N., & Jacquin, F. (1986). Interaction between the soil microbial activity and phosphorus availability of natural phosphate rocks. Agricultural'Research, 10, 231–241. https://hal.science/hal-03202538v1/file/phsph-geor-erev-86-english%20%281%29.pdf

  42. Chatterjee, P., Ghangrekar, M.M., Rao, S.: Biogas production from partially digested septic tank sludge and its kinetics. Waste Biomass Valorization 10, 387–398 (2019). https://doi.org/10.1007/s12649-017-0065-0

    Article  Google Scholar 

  43. Paul, T., Halder, S.K., Das, A., Bera, S., Maity, C., Mandal, A., Mondal, K.C.: Exploitation of chicken feather waste as a plant growth promoting agent using keratinase producing novel isolate Paenibacillus woosongensis TKB2. Biocatal. Agric. Biotechnol. 2(1), 50–57 (2013). https://doi.org/10.1016/j.bcab.2012.10.001

    Article  Google Scholar 

  44. Dmitrenko, O., Thorpe, C., Bach, R.D.: Mechanism of SN2 disulfide bond cleavage by phosphorus nucleophiles Implications for biochemical disulfide reducing agents. J. Org. Chem. 72(22), 8298–8307 (2007). https://doi.org/10.1021/2Fjo071271w

    Article  Google Scholar 

  45. Manni, G., Caron, F.: Calibration and determination of volatile fatty acids in waste leachates by gas chromatography. J. Chromatogr. A 690(2), 237–242 (1995). https://doi.org/10.1016/0021-9673(94)01081-O

    Article  Google Scholar 

  46. Bálint, B., Bagi, Z., Tóth, A., Rákhely, G., Perei, K., Kovács, K.L.: Utilization of keratin-containing biowaste to produce biohydrogen. Appl. Microbiol. Biotechnol. 69, 404–410 (2005). https://doi.org/10.1007/s00253-005-1993-3

    Article  Google Scholar 

  47. Al-Sulaimi, I.N., Nayak, J.K., Alhimali, H., Sana, A., Al-Mamun, A.: Effect of volatile fatty acids accumulation on biogas production by sludge-feeding thermophilic anaerobic digester and predicting process parameters. Fermentation 8(4), 184 (2022). https://doi.org/10.3390/fermentation8040184

    Article  Google Scholar 

  48. Wu, F., **e, J., **n, X., He, J.: Effect of activated carbon/graphite on enhancing anaerobic digestion of waste activated sludge. Front. Microbiol. 13, 999647 (2022). https://doi.org/10.3389/fmicb.2022.999647

    Article  Google Scholar 

Download references

Funding

No fund was received from other agencies to carry out research work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, writing of the original draft and formal analysis were done by SKP, supervision and Validation were by MM, data curation and editing were carried out by GK and JR.

Corresponding author

Correspondence to P. Shankar Kannan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

This declaration is not applicable since no human and animal studies were carried out.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 358 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, P.S., Muthukannan, M., Ganesh, K. et al. Evaluation of the Effect of Adding Rock Phosphate to Anaerobic Digestion of Waste Chicken Feathers for Biogas Production. Waste Biomass Valor 15, 3589–3597 (2024). https://doi.org/10.1007/s12649-023-02407-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02407-x

Keywords

Navigation