Log in

In-vitro Evaluation of Talaromyces islandicus Mediated Zinc Oxide Nanoparticles for Antibacterial, Anti-inflammatory, Bio-pesticidal and Seed Growth Promoting Activities

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) are regarded as the most significant innovation of the twentieth century to produce biological materials at the nanoscale level, with numerous applications for human welfare. In this study, Talaromyces extract-coated zinc oxide nanoparticles (ZnONPs) were synthesised, and their toxicity against human pathogenic bacteria via antibacterial and anti-inflammatory activity was investigated. In the meantime, the pesticidal efficacy against the green cloverworm (Hypena scabra) was assessed. Spectroscopy techniques were utilized to characterise ZnONPs. The UV spectrum peak indicated nanoparticle formation at 298 nm, and X-ray diffraction (XRD) analysis showed that nanoparticles were 22–34 nm in size and crystalline. The octagonal to spherical shape of NPs was determined using microscopy techniques such as SEM and AFM. EDX analysis confirmed the presence of elemental silver. Antimicrobial activity as compared to streptomycin, zinc oxide nanoparticles have demonstrated noteworthy efficacy against both S. aureus and S. epidermis, exhibiting inhibition zones measuring 10.33 ± 0.33 and 13 ± 0.33, respectively. Anti-inflammatory responses of nanoparticles evaluated using the human red blood cells (HRBC) membrane stabilisation method, egg albumin assay, and protein denaturation assay showed dose-dependent activity. The HRBC membrane stabilisation assay revealed 86–25% haemolysis rates for ZnONPs compared to 61–8% for standard aspirin at 100 and 500 µg/mL, respectively. Albumin denaturation assay of ZnONPs (100 µg/mL) demonstrated 37.89% inhibition compared to 61.96% inhibition by standard aspirin (100 µg/mL), whereas protein denaturation assay demonstrated ZnONPs 45.69% inhibition and std aspirin 60.67% inhibition, respectively. Evaluation of the pesticidal potential of ZnONPs against the green cloverworms revealed mortality rates of 28.57% at 24 h, 66.66% at 48 h and 83.33% at 72 h, respectively, having no detrimental effects on seed germination. According to our knowledge, this work is the first to document the mycosynthesis of zinc oxide nanoparticles (ZnONPs) using Talaromyces islandicus. This finding can potentially facilitate the synthesis of novel and economically viable nano-drugs through a microbial-based synthesis approach.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Peltonen, L., Hirvonen, J.: Drug nanocrystals—versatile option for formulation of poorly soluble materials. Int. J. Pharm. 537, 73–83 (2017). https://doi.org/10.1016/j.ijpharm.2017.12.005

    Article  Google Scholar 

  2. Moodley, J.S., Krishna, S.B.N., Pillay, K., Sershen, P., G.: Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv. Nat Sci. 9, 015011 (2018). https://doi.org/10.1088/2043-6254/aaabb2

    Article  Google Scholar 

  3. Zeinab, S., Mojtaba, S., Farad, K.: Biological synthesis of gold nanoparticles by fungus Epicoccum nigrum. J. Clus. Sci. 22, 661–665 (2011)

    Article  Google Scholar 

  4. Thangavel, S., Ramasamy, B.: Bio-medically active zinc oxide nanoparticles synthesized by using extremophilic actinobacterium, Streptomyces sp. (MA30) and its characterization. Artif. Cells Nanomed. Biotechnol. 45, 1521–1529 (2017). https://doi.org/10.1080/21691401.2016.1260577

    Article  Google Scholar 

  5. Tiwari, V., Mishra, N., Gadani, K., Solanki, P.S., Shah, N.A., Tiwari, M.: Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Front. Microbiol. 9, 1218 (2018). https://doi.org/10.3389/fmicb.2018.01218

    Article  Google Scholar 

  6. Gudkov, S.V., Burmistrov, D.E., Serov, D.A., Rebezov, M.B., Semenova, A.A., Lisitsyn, A.B.: A mini review of antibacterial properties of ZnO nanoparticles. Front. Phys. 9, 641481 (2021). https://doi.org/10.3389/fphy.2021.641481

    Article  Google Scholar 

  7. Olechnowicz, J., Tinkov, A., Skalny, A., Suliburska, J.: Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J. Physiol. Sci. 68, 19–31 (2018). https://doi.org/10.1007/s12576-017-0571-7

    Article  Google Scholar 

  8. Miri, A., Mahdinejad, N., Ebrahimy, O., Khatami, M., Sarani, M.: Zinc oxide nanoparticles: biosynthesis, characterization, antifungal and cytotoxic activity. Mater. Sci. Eng. 104, 109981 (2019)

    Article  Google Scholar 

  9. Nehru, L., Kandasamy, G.D., Sekar, V., Alshehri, M.A., Panneerselvam, C., Alasmari, A., Kathirvel, P.: Green synthesis of ZnO-Nps using endophytic fungal extract of Xylaria arbuscula from Blumea axillaris and its biological applications. Artif. Cells Nanomed. Biotechnol. 51, 318–333 (2023)

    Article  Google Scholar 

  10. Mans, D.R.A., Friperson, P., Djotaroeno, M., Misser, S.V., Pawirodihardjo, J.: In vitro anti-inflammatory and antioxidant activities as well as phytochemical content of the fresh stem juice from Montrichardia arborescens Schott (Araceae). Pharmacogn. J. 14, 296–304 (2022)

    Article  Google Scholar 

  11. Baruah, S., Dutta, J.: Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ. Chem. Let. 7, 191–204 (2009). https://doi.org/10.1007/s10311-009-0228-8

    Article  Google Scholar 

  12. Roni, M., Murugan, K., Panneerselam, C., Suramaniam, J., Nicoletti, M., Madhiyazhagan, P., Dinesh, D., Suresh, U., Khater, H., Wei, H., Canale, A., Alarfaj, A.A., Murgan, A.M., Higuchi, A., Benelli, G.: Characterization and biotoxicity of Hypnea musciformis-synthesied silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol. Eniron. Saf. 121, 31–38 (2015)

    Article  Google Scholar 

  13. Wang, J., Zhou, P., Shi, X., Yang, N., Yan, N., Zhao, Q., Yang, C., Guan, Y.: Primary metabolite contents are correlated with seed protein and oil traits in near-isogenic lines of soybean. The Crop J. 7, 651–659 (2019). https://doi.org/10.1016/j.cj.2019.04.002

    Article  Google Scholar 

  14. Christensen, C.M., Kaufmann, H.H.: Deterioration of stored grains by fungi. Ann. Rev. Phytopathol. 3, 69–84 (2003)

    Article  Google Scholar 

  15. Kalpana, V.N., Kataru, B.A.S., Sravani, N., Vigneshwari, T., Panneeresevam, A., Devi Rajeswari, V.: Biosynthesis of zinc oxide nanoparticle using culture filtrate of Aspergillus niger: antimicrobial textiles and dye degradation studies. OpenNano. 3, 40–55 (2018)

    Article  Google Scholar 

  16. Jain, D., Shivani, B., A., Singh, H., Daima, H.K., Singh, M., Mohanty, S.R., Stephen, B.J., Singh, A.: Microbial fabrication of zinc oxide nanoparticles and evaluation of their antimicrobial and photocatalytic properties. Front. Chem. 8, 778 (2020). https://doi.org/10.3389/fchem.2020.00778

    Article  Google Scholar 

  17. Chakraborty, B., Bhat, M.P., Basavarajappa, D.S., Rudrappa, M., Nayaka, S., Kumar, R.S., Almansour, A.I., Perumal, K.: Biosynthesis and characterization of polysaccharide-capped silver nanoparticles from Acalypha indica L. and evaluation of their biological activities. Env. Res. 225, 115614 (2023)

    Article  Google Scholar 

  18. Pallavi, S.S., Bhat, M.P., Nayaka, S.: Microbial synthesis of silver nanoparticles using Streptomyces sp. PG12 and their characterization, antimicrobial activity and cytotoxicity assessment against human lung (A549) and breast (MCF-7) cancer cell lines. Int J Pharm Pharm Sci 13, 94–102 (2021)

    Google Scholar 

  19. Shashiraj, K.N., Nayaka, S., Kumar, R.S., Kantli, G.B., Basavarajappa, D.S., Gunagambhire, P.V., Almansour, A.I., Perumal, K.: Rotheca serrata flower bud extract mediated bio-friendly preparation of silver nanoparticles: their characterizations, anticancer, and apoptosis inducing ability against pancreatic ductal adenocarcinoma cell line. Processes 11, 893 (2023)

    Article  Google Scholar 

  20. Shashiraj, K.N., Hugar, A., Kumar, R.S., Rudrappa, M., Bhat, M.P., Almansour, A.I., Perumal, K., Nayaka, S.: Exploring the antimicrobial, anticancer, and apoptosis inducing ability of biofabricated silver nanoparticles using Lagerstroemia speciosa flower buds against the human osteosarcoma (MG-63) cell line via flow cytometry. Bioeng. 10, 821 (2023)

    Google Scholar 

  21. Daphedar, A., Taranath, T.C.: Characterization and cytotoxic effect of biogenic silver nanoparticles on mitotic chromosomes of Drimia polyantha (Blatt. and McCann) Stearn. Toxicol. Rep. 5, 910–918 (2018)

    Article  Google Scholar 

  22. Magaldi, S., Mata-Essayag, S., Hartung, C.C., Perez, C., Colella, M.T., Olaizola, Y.O.: Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis. 8, 39–45 (2016)

    Article  Google Scholar 

  23. Math, H.H., Shashiraj, K.N., Kumar, R.S., Rudrappa, M., Bhat, M.P., Basavarajappa, D.S., Almansour, A.I., Perumal, K., Nayaka, S.: Investigation of in vitro anticancer and apoptotic potential of biofabricated silver nanoparticles from Cardamine hirsuta (L.) leaf extract against Caco-2 cell line. Inorg. 11, 322 (2023)

    Article  Google Scholar 

  24. Gandhidasan, R., Thamaraichelvan, A., Baburaj, S.: Anti- inflammatory action of Lannea coromandelica by HRBC membrane stabilization. Fitoterapia 12, 1–83 (1991)

    Google Scholar 

  25. Leelaprakash, G., Dass, S.M.: Invitro anti-inflammatory activity of methanol extract of Enicostemma axillare. Int. J. Drug Dev. Res. 3, 189–196 (2011)

    Google Scholar 

  26. Moharram, A., Omar, A., El-Ghani, H.: In vitro assessment of antimicrobial and anti-inflammatory potential of endophytic fungal metabolites extracts. Eur. J. Biol. Res. 7, 234–244 (2017). https://doi.org/10.5281/zenodo.839696

    Article  Google Scholar 

  27. Meher, B.B., Sahu, S., Singhal, S., Joshi, M., Maan, P., Gautam, S.: Influence of green synthesied zinc oxide nanoparticles on seed germination and seedling growth in wheat (Triticum aestium). Int. J. Curr. Microbiol. App. Sci. 9, 258–270 (2020)

    Article  Google Scholar 

  28. Jamdagni, P., Khatri, P.J.S., Rana, J.: Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbortristis and their antifungal activity. King Saud Uni. Sci. 30, 168–175 (2018)

    Article  Google Scholar 

  29. Santhoshkumar, J., Kumar, V.S., Rajeshkumar, S.: Synthesis zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resour.-Effic. Technol. 3, 459–465 (2017)

    Google Scholar 

  30. Sangeetha, G., Rajeshwari, S., Venkatesh, R.: Green synthesized Zno nanoparticles against bacterial and fungal pathogens. Int. J. Prog. Nat. Sci. Mater. 22, 693–700 (2012)

    Article  Google Scholar 

  31. Baskar, G., Chandhuru, J., Fahad, S.K., Praeven, A.S.: Mycological synthesis characterization and antifungal activity of zinc oxide nanoparticles. Asian J. Pharm. Tech. 3, 142–146 (2013)

    Google Scholar 

  32. Rao, A., Schoeneberger, M., Gnecco, E., Glaezel, T., Meyer, E., Brandlin, D., Scandella, L.: Characterization of nanoparticles using atomic force microscopy. J. Phys. 61, 971–976 (2007)

    Google Scholar 

  33. Raut, S., Thorat, P.V., Thakre, R.: Green synthesis of zinc oxide (ZnO) nanoparticles using Ocimum tenuiflorum leaves. Int. J. Sci. Res. 4, 1225–1228 (2015)

    Google Scholar 

  34. Emad, J.I., Karkaz, M.T., Mahmood, K.S., Amin, S.B.: Biosynthesis of zinc oxide nanoparticles and assay of antibacterial activity. Am. J. Biochem. Biotechnol. 13, 63–68 (2017)

    Article  Google Scholar 

  35. Abdelbaky, A.S., Abd El-Mageed, T.A., Babalghith, A.O., Selim, S., Mohamed, A.M.H.A.: Green synthesis and characterization of ZnO nanoparticles using Pelargonium odoratissimum (L.) aqueous leaf extract and their antioxidant, antibacterial and anti-inflammatory activities. Antioxidants 11, 1444 (2022). https://doi.org/10.3390/antiox11081444

    Article  Google Scholar 

  36. Stephen, T.O., Kennedy, K.A.: Prevalence of multidrug-resistant Escherichia coli isolated from drinking water sources. Int. J. Microbiol. (2018). https://doi.org/10.1155/2018/7204013

    Article  Google Scholar 

  37. Jung, R., Fish, D.N., Obritsch, M.D., Maclaren, R.: Surveillance of multidrug resistant Pseudomonas aeroginosa in an urban tertiary-care teaching hospital. J. Hosp. Infect. 57, 105–111 (2004). https://doi.org/10.1016/j.jhin.2004.03.001

    Article  Google Scholar 

  38. Yesmin, S., Paul, A., Naz, T., Rahman, A.B.M., Akhter, S.F., Wahed, M.I., Emran, T.B., Siddiqui, S.A.: Membrane stabilization as a mechanism of the anti-inflammatory activity of ethanolic root extract of Choi (Piper chaba). Clin. Phytosci. 6, 59 (2020). https://doi.org/10.1186/s40816-020-00207-7

    Article  Google Scholar 

  39. Lopez-Miranda, J.L., Molina, G.A., González-Reyna, M.A., España-Sánchez, B.L., Esparza, R., Silva, R., Estévez, M.: Antibacterial and anti-inflammatory properties of ZnO nanoparticles synthesized by a green method using Sargassum extracts. Int. J. Mol. Sci. 24, 1474 (2023). https://doi.org/10.3390/ijms24021474

    Article  Google Scholar 

  40. Rajakumar, G., Thiruvengadam, M., Mydhili, G., Gomathi, T., Chung, I.M.: Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess Biosyst. Eng. 41, 21–30 (2017). https://doi.org/10.1007/s00449-017-1840-9

    Article  Google Scholar 

  41. Velsankar, K., Venkatesan, A., Muthumari, P., Suganya, S., Mohandoss, S., Sudhahar, S.: Green inspired synthesis of ZnO nanoparticles and its characterizations with biofilm, antioxidant, anti-inflammatory, and anti-diabetic activities. J. Mol. Struct. 1255, 132420 (2022). https://doi.org/10.1016/j.molstruc.2022.132420

    Article  Google Scholar 

  42. Jameel, M., Shoeb, M., Khan, M.T., Ullah, R., Mobin, M., Farooqi, M.K., Adnan, S.M.: Enhanced insecticidal activity of thiamethoxam by zinc oxide nanoparticles: a novel nanotechnology approach for pest control. ACS Omega 5, 1607–1615 (2020)

    Article  Google Scholar 

  43. Gutiérrez-Ramírez, J.A., Betancourt-Galindo, R., Aguirre-Uribe, L.A., Cerna-Chávez, E., Sandoval-Rangel, A., Ángel, E.C., Chacón-Hernández, J.C., García-López, J.I., Hernández-Juárez, A.: Insecticidal effect of zinc oxide and titanium dioxide nanoparticles against Bactericera cockerelli Sulc. (Hemiptera: Triozidae) on tomato Solanum lycopersicum. Agronomy 11, 1460 (2021). https://doi.org/10.3390/agronomy11081460

    Article  Google Scholar 

  44. Thakur, P., Thakur, S., Kumari, P., Shandilya, M., Sharma, S., Poczai, P., Alarfaj, A.A., Sayyed, R.Z.: Nano-insecticide: synthesis, characterization, and evaluation of insecticidal activity of ZnO NPs against Spodoptera litura and Macrosiphum euphorbiae. Appl. Nanosci. 12, 3835–3850 (2022). https://doi.org/10.1007/s13204-022-02530-6

    Article  Google Scholar 

  45. Pittarate, S., Rajula, J., Rahman, A., Vivekanandhan, P., Thungrabeab, M., Mekchay, S., Krutmuang, P.: Insecticidal effect of zinc oxide nanoparticles against Spodoptera frugiperda under laboratory conditions. Insects 12, 1017 (2021). https://doi.org/10.3390/insects12111017

    Article  Google Scholar 

  46. Itroutwar, P.D., Kasivelu, G., Raguraman, V., Malaichamy, K., Sevathapandian, S.K.: Effects of biogenic zinc oxide nanoparticles on seed germination and seedling vigor of maize (Zea mays). Biocatal. Agric. Biotechnol. 29, 101778 (2020). https://doi.org/10.1016/j.bcab.2020.101778

    Article  Google Scholar 

  47. Khanm, H., Vaishnavi, B.A., Shankar, A.G.: Raise of nano-fertilizer era: effect of nano scale zinc oxide particles on the germination, growth and yield of tomato (Solanum lycopersicum). Int. J. Curr. Microbiol. Appl. Sci. 7, 1861–1871 (2018). https://doi.org/10.20546/ijcmas.2018.705.219

    Article  Google Scholar 

  48. Sarkhosh, S., Kahrizi, D., Darvishi, E., Tourang, M., Haghighi-Mood, S., Vahedi, P., Ercisli, S.: Effect of zinc oxide nanoparticles (ZnO-NPs) on seed germination characteristics in two Brassicaceae family species: Camelina sativa and Brassica napus L. J. Nanomater. (2022). https://doi.org/10.1155/2022/1892759

    Article  Google Scholar 

  49. Włodarczyk, K., Smolińska, B.: The effect of nano-ZnO on seeds germination parameters of different tomatoes (Solanum lycopersicum L.) cultivars. Molecules 27, 4963 (2022). https://doi.org/10.3390/molecules27154963

    Article  Google Scholar 

  50. García-López, J.I., Zavala-García, F., Olivares-Sáenz, E., Lira-Saldívar, R.H., Barriga-Castro, D.E., Ruiz-Torres, N.A., Cortez, R.E., Vázquez-Alvarado, R., Niño-Medina, G.: Zinc oxide nanoparticles boosts phenolic compounds and antioxidant activity of Capsicum annuum L. during germination. Agronomy 8, 215 (2018)

    Article  Google Scholar 

  51. Burman, U., Saini, M., Kumar, P.: Effect of zinc oxide nanoparticles on growth and antioxidant system of garckpea seedlings. Toxicol. Environ. Chem. 95, 605–612 (2013)

    Article  Google Scholar 

Download references

Funding

This project was supported by Researchers Supporting Project Number (RSP2024R142), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

The study conception and design were done by VG. Material preparation, data collection and analysis were performed by MKS, T and PG. The first draft of the manuscript was written by MKS, and review & editing were done by MPB and SKN. Data validation and funding acquisition were done by RSK and SMM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vidyasagar M. Gunagambhire.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangeeta, M.K., Tejashree, Gunagambhire, V.M. et al. In-vitro Evaluation of Talaromyces islandicus Mediated Zinc Oxide Nanoparticles for Antibacterial, Anti-inflammatory, Bio-pesticidal and Seed Growth Promoting Activities. Waste Biomass Valor 15, 1901–1915 (2024). https://doi.org/10.1007/s12649-023-02386-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02386-z

Keywords

Navigation