Log in

Properties of Dietary Fibre From Passion Fruit Seed Obtained Through Individual and Combined Alkaline and Ultrasonication Extraction Techniques

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study was to evaluate the functional properties of dietary fibre extracted by different extraction techniques from the defatted seeds of yellow passion fruit (DPFS) and valorize this by-product of the passion fruit juice industry as food ingredient.

Materials and Methods

In order to extract dietary fibre (DF) from DPFS, the ultrasound-alkali extraction method (1% NaOH, ultrasonic probe with extraction time: 10–30 min, solid–liquid ratio: 5–20 g/100 mL, and power: 100–300 W) was contrasted with the conventional alkali extraction method (1% NaOH at 50 °C for 30 min) and distilled water-based ultrasonication extraction method. The characterization and physicochemical and functional qualities of the extracted dietary fibre were investigated. The functional properties including glucose absorption activity, amylase inhibitory activity, and cytotoxicity assay were also evaluated. Utilizing response surface methodology approach, the settings for dietary fibre extraction employing ultrasonic and alkaline solutions were optimised.

Results

The alkaline extraction yielded 52.8% DF, and ultrasonication for 90 min yielded 50.4% whereas the alkaline-ultrasonic method yielded 61.35% at the optimized condition. Ultrasonication treatment enhanced the functional quality of DF by increasing the water-holding (2.2–2.9 g/g), oil-holding (3.4–4.1 g/g), and swelling capacities (7.5–15.7 mL/g) and decreasing the cation exchange capacity (54.3–53.2 (meq/kg). Glucose adsorption capacity (9.5–18.3 mmol glucose/g fibre), α-amylase activity, and emulsion capacity (38.9–50.1%) were improved significantly by ultrasound. Cytotoxicity study revealed that toxicity increased during ultrasonication, but within the acceptable limit.

Conclusion

The findings demonstrated that DPFS waste has a high potential for use in food processing as a functional food ingredient.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  1. Pereira, M.G., Hamerski, F., Andrade, E.F., Scheer, A.D.P., Corazza, M.L.: Assessment of subcritical propane, ultrasound-assisted and Soxhlet extraction of oil from sweet passion fruit (Passiflora alata Curtis) seeds. J. Supercrit. Fluids 128, 338–348 (2017). https://doi.org/10.1016/j.supflu.2017.03.021

    Article  Google Scholar 

  2. Corrêa, R.C., Peralta, R.M., Haminiuk, C.W., Maciel, G.M., Bracht, A., Ferreira, I.C.: The past decade findings related with nutritional composition, bioactive molecules and biotechnological applications of Passiflora spp. (passion fruit). Trends Food Sci. Technol. 58, 79–95 (2016). https://doi.org/10.1016/j.tifs.2016.10.006

    Article  Google Scholar 

  3. Thokchom, R., Mandal, G.: Production preference and importance of passion fruit (Passiflora Edulis): a review. J. Agric. Eng. Food Technol. 4(1), 27–30 (2017)

    Google Scholar 

  4. Ramaiya, S.D., Bujang, J.B., Zakaria, M.H., Saupi, N.: Nutritional, mineral and organic acid composition of passion fruit (Passiflora species). Food Res. 3(3), 231–240 (2019). https://doi.org/10.26656/fr.2017.3(3).233

    Article  Google Scholar 

  5. Santos, J.T., Petry, F.C., de Castro Tobaruela, E., Mercadante, A.Z., Gloria, M.B.A., Costa, A.M., Hassimotto, N.M.A.: Brazilian native passion fruit (Passiflora tenuifila Killip) is a rich source of proanthocyanidins, carotenoids, and dietary fiber. Food Res. Int. 147, 110521 (2021). https://doi.org/10.1016/j.foodres.2021.110521

    Article  Google Scholar 

  6. Oliveira, C.F., Gurak, P.D., Cladera-Olivera, F., Marczak, L.D.F.: Evaluation of physicochemical, technological and morphological characteristics of powdered yellow passion fruit peel. Int. Food Res. J. 23(4), 1652–1663 (2016)

    Google Scholar 

  7. Chau, C.F., Huang, Y.L.: Characterization of passion fruit seed fibres —A potential fibre source. Food Chem. 85, 189–194 (2004). https://doi.org/10.1016/j.foodchem.2003.05.009

    Article  Google Scholar 

  8. dos Reis, L.C.R., Facco, E.M.P., Salvador, M., Flôres, S.H., de Oliveira Rios, A.: Antioxidant potential and physicochemical characterization of yellow, purple and orange passion fruit. J. Food Sci. Technol. 55, 2679–2691 (2018). https://doi.org/10.1007/s13197-018-3190-2

    Article  Google Scholar 

  9. Qi, X., Tester, R.F.: Utilisation of dietary fibre (non-starch polysaccharide and resistant starch) molecules for diarrhoea therapy: a mini-review. Int. J Biol Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.195

    Article  Google Scholar 

  10. Chau, C.F., Huang, Y.L., Chang, F.Y.: Effects of fibre derived from passion fruit seed on the activities of ileum mucosal enzymes and colonic bacterial enzymes in hamsters. J. Sci. Food Agric. 85(12), 2119–2124 (2005). https://doi.org/10.1002/jsfa.2230

    Article  Google Scholar 

  11. Dhingra, D., Michael, M., Rajput, H., Patil, R.T.: Dietary fibre in foods: a review. J. Food Sci. Technol. 49, 255–266 (2012). https://doi.org/10.1007/s13197-011-0365-5

    Article  Google Scholar 

  12. Du, X., Wang, L., Huang, X., **g, H., Ye, X., Gao, W., Wang, H.: Effects of different extraction methods on structure and properties of soluble dietary fiber from defatted coconut flour. LWT- Food Sci. Technol. 143, 111031 (2021). https://doi.org/10.1016/j.lwt.2021.111031

    Article  Google Scholar 

  13. Wang, K., Li, M., Wang, Y., Liu, Z., Ni, Y.: Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit (Actinidia deliciosa). Food Hydrocolloids 110, 106162 (2021). https://doi.org/10.1016/j.foodhyd.2020.106162

    Article  Google Scholar 

  14. Ding, Q., Li, Z., Wu, W., Su, Y., Sun, N., Luo, L., He, R.: Physicochemical and functional properties of dietary fiber from Nannochloropsis oceanica: a comparison of alkaline and ultrasonic-assisted alkaline extractions. LWT- Food Sci. Technol. 133, 110080 (2020). https://doi.org/10.1016/j.lwt.2020.110080

    Article  Google Scholar 

  15. Jaiswal, D., Devnani, G.L., Rajeshkumar, G., Sanjay, M.R., Siengchin, S.: Review on extraction, characterization, surface treatment and thermal degradation analysis of new cellulosic fibers as sustainable reinforcement in polymer composites. Curr. Res. Green Sustain. Chem. 5, 100271 (2022). https://doi.org/10.1016/j.crgsc.2022.100271

    Article  Google Scholar 

  16. Liu, Y., Yi, S., Ye, T., Leng, Y., Hossen, M.A., Sameen, D.E., Qin, W.: Effects of ultrasonic treatment and homogenization on physicochemical properties of okara dietary fibers for 3D printing cookies. Ultrason. Sonochem. 77, 105693 (2021). https://doi.org/10.1016/j.ultsonch.2021.105693

    Article  Google Scholar 

  17. Zhang, W., Zeng, G., Pan, Y., Chen, W., Huang, W., Chen, H., Li, Y.: Properties of soluble dietary fiber-polysaccharide from papaya peel obtained through alkaline or ultrasound-assisted alkaline extraction. Carbohydr. Polym. 172, 102–112 (2017). https://doi.org/10.1016/j.carbpol.2017.05.030

    Article  Google Scholar 

  18. Cai, Y., Huang, L., Chen, B., Su, J., Zhao, X., Zhao, M., Van der Meeren, P.: Effect of homogenization associated with alkaline treatment on the structural, physicochemical, and emulsifying properties of insoluble soybean fiber (ISF). Food Hydrocoll. 113, 106516 (2021). https://doi.org/10.1016/j.foodhyd.2020.106516

    Article  Google Scholar 

  19. Jiang, Y., Yin, H., Zheng, Y., Wang, D., Liu, Z., Deng, Y., Zhao, Y.: Structure, physicochemical and bioactive properties of dietary fibers from Akebia trifoliata (Thunb.) Koidz. Seeds using ultrasonication/shear emulsifying/microwave-assisted enzymatic extraction. Food Res. Int. 136, 109348 (2020). https://doi.org/10.1016/j.foodres.2020.109348

    Article  Google Scholar 

  20. Krishnaiah, P., Ratnam, C.T., Manickam, S.: Enhancements in crystallinity, thermal stability, tensile modulus and strength of sisal fibres and their PP composites induced by the synergistic effects of alkali and high intensity ultrasound (HIU) treatments. Ultrason. Sonochem. 34, 729–742 (2017). https://doi.org/10.1016/j.ultsonch.2016.07.008

    Article  Google Scholar 

  21. Deng, Z., Pan, Y., Chen, W., Chen, W., Yun, Y., Zhong, Q., Chen, H.: Effects of cultivar and growth region on the structural, emulsifying and rheological characteristic of mango peel pectin. Food Hydrocolloids 103, 105707 (2020). https://doi.org/10.1016/j.foodhyd.2020.105707

    Article  Google Scholar 

  22. Zhao, S., Ren, W., Gao, W., Tian, G., Zhao, C., Bao, Y., Zheng, J.: Effect of mesoscopic structure of citrus pectin on its emulsifying properties: compactness is more important than size. J. Colloid Interface Sci. 570, 80–88 (2020). https://doi.org/10.1016/j.jcis.2020.02.113

    Article  Google Scholar 

  23. Ren, Z., Li, X., Ma, F., Zhang, Y., Hu, W., Khan, M.Z.H., Liu, X.: Oil-in-water emulsions prepared using high-pressure homogenisation with Dioscorea opposita mucilage and food-grade polysaccharides: Guar gum, xanthan gum, and pectin. LWT- Food Sci. Technol. 162, 113468 (2022). https://doi.org/10.1016/j.lwt.2022.113468

    Article  Google Scholar 

  24. Firestone, D.: Official methods and recommended practices of the AOCS. American Oil Chemists’ Society, Walter de Gruyter GmbH (2009). https://doi.org/10.1515/revce-2013-0038

    Book  Google Scholar 

  25. Apostolidis, E., Mandala, I.: Modification of resistant starch nanoparticles using high-pressure homogenization treatment. Food Hydrocolloids 103, 105677 (2020). https://doi.org/10.1016/j.foodhyd.2020.105677

    Article  Google Scholar 

  26. Choi, H.D., Hong, J.S., min Pyo, S., Ko, E., Shin, H. Y., & Kim, J. Y.: Starch nanoparticles produced via acidic dry heat treatment as a stabilizer for a Pickering emulsion: Influence of the physical properties of particles. Carbohydr. Polym. 239, 116241 (2020). https://doi.org/10.1016/j.carbpol.2020.116241

    Article  Google Scholar 

  27. Abdul-Hamid, A., Luan, Y.S.: Functional properties of dietary fibre prepared from defatted rice bran. Food Chem. 68(1), 15–19 (2000). https://doi.org/10.1016/S0308-8146(99)00145-4

    Article  Google Scholar 

  28. Ou, S., Kwok, K.C., Li, Y., Fu, L.: In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. J. Agric. Food Chem. 49(2), 1026–1029 (2001). https://doi.org/10.1021/jf000574n

    Article  Google Scholar 

  29. Deka, A., Sharma, M., Sharma, M., Mukhopadhyay, R., Doley, R.: Purification and partial characterization of an anticoagulant PLA2 from the venom of Indian Daboia russelii that induces inflammation through upregulation of proinflammatory mediators. J. Biochem. Mol. Toxicol. 31(10), e21945 (2017). https://doi.org/10.1002/jbt.21945

    Article  Google Scholar 

  30. Vega-Avila, E., Pugsley, M.K.: An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc West Pharmacol Soc 54, 10–14 (2011)

    Google Scholar 

  31. López-Vargas, J.H., Fernández-López, J., Pérez-Álvarez, J.A., Viuda-Martos, M.: Chemical, physico-chemical, technological, antibacterial and antioxidant properties of dietary fiber powder obtained from yellow passion fruit (Passiflora edulis var flavicarpa) co-products. Food Res Int 51(2), 756–763 (2013)

    Article  Google Scholar 

  32. Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M., Hai, Y.: Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr. Polym. 83(4), 1804–1811 (2011). https://doi.org/10.1016/j.carbpol.2010.10.040

    Article  Google Scholar 

  33. Nishiyama, Y., Kuga, S., Okano, T.: Mechanism of mercerization revealed by X-ray diffraction. J. Wood Sci. 46(6), 452–457 (2000). https://doi.org/10.1007/BF00765803

    Article  Google Scholar 

  34. Moriana, R., Vilaplana, F., Karlsson, S., Ribes-Greus, A.: Improved thermo-mechanical properties by the addition of natural fibres in starch-based sustainable biocomposites. Compos. Part A Appl. Sci. Manuf. 42(1), 30–40 (2011). https://doi.org/10.1016/j.compositesa.2010.10.001

    Article  Google Scholar 

  35. Liu, Y., Zhang, H., Yi, C., Quan, K., Lin, B.: Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment. Food Chem. 342, 128352 (2021). https://doi.org/10.1016/j.foodchem.2020.128352

    Article  Google Scholar 

  36. Xu, J., Mukherjee, D., Chang, S.K.C.: Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultra-high pressure homogenization. Food Chem. 240, 1005–1013 (2018). https://doi.org/10.1016/j.foodchem.2017.07.077

    Article  Google Scholar 

  37. Tabilo-Munizaga, G., Villalobos-Carvajal, R., Herrera-Lavados, C., Moreno-Osorio, L., Jarpa-Parra, M., Pérez-Won, M.: Physicochemical properties of high-pressure treated lentil protein-based nanoemulsions. LWT- Food Sci. Technol. 101, 590–598 (2019). https://doi.org/10.1016/j.lwt.2018.11.070

    Article  Google Scholar 

  38. Walia, N., Chen, L.: Pea protein based vitamin D nanoemulsions: fabrication, stability and in vitro study using Caco-2 cells. Food Chem. 305, 125475 (2020). https://doi.org/10.1016/j.foodchem.2019.125475

    Article  Google Scholar 

  39. Ma, X., Chen, W., Yan, T., Wang, D., Hou, F., Miao, S., Liu, D.: Comparison of citrus pectin and apple pectin in conjugation with soy protein isolate (SPI) under controlled dry-heating conditions. Food Chem. 309, 125501 (2020). https://doi.org/10.1016/j.foodchem.2019.125501

    Article  Google Scholar 

  40. Li, W., Huang, D., Song, W., Ouyang, F., Li, W., Song, Y., Li, D.: Pickering emulsions stabilized by zein-proanthocyanidins-pectin ternary composites (ZPAAPs): construction and delivery studies. Food Chem. 404, 134642 (2023). https://doi.org/10.1016/j.foodchem.2022.134642

    Article  Google Scholar 

  41. Zheng, Y., Wang, X., Tian, H., Li, Y., Shi, P., Guo, W., Zhu, Q.: Effect of four modification methods on adsorption capacities and in vitro hypoglycemic properties of millet bran dietary fibre. Food Res. Int. 147, 110565 (2021). https://doi.org/10.1016/j.foodres.2021.110565

    Article  Google Scholar 

  42. Yamashoji, S., Isshiki, K.: Rapid detection of cytotoxicity of food additives and contaminants by a novel cytotoxicity test, menadione-catalyzed H2O2 production assay. Cytotechnology 37(3), 171–178 (2001). https://doi.org/10.1023/A:1020580818979

    Article  Google Scholar 

  43. Am, A., Rsu, W., Lawal, M.O., Aa, S., Sm, S., Zaharadeen, A.: Acute and subchronic toxicity study of methanol seed extract of passion fruit (Passiflora edulis var. flavicarpa) in Albino rats. Food Sci. Qual. Manage. 56, 1–9 (2016)

    Google Scholar 

Download references

Acknowledgment

First author is thankful to Department of Science and Technology, Ministry of Science and Technology, Government of India for DST INSPIRE Fellowship (No: DST/INSPIRE Fellowship/[IF180979]). The facilities provided by Tezpur University are duly acknowledged.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

HC: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Software; Validation; Visualization; Roles/Writing—original draft; MS: Investigation; MJD: Investigation; CLM: Conceptualization; Resources; Supervision; Validation; Visualization; Writing—review & editing.

Corresponding author

Correspondence to Charu Lata Mahanta.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest of any kind.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chutia, H., Sharma, M., Das, M.J. et al. Properties of Dietary Fibre From Passion Fruit Seed Obtained Through Individual and Combined Alkaline and Ultrasonication Extraction Techniques. Waste Biomass Valor 15, 2345–2359 (2024). https://doi.org/10.1007/s12649-023-02288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02288-0

Keywords

Navigation