Log in

Enhanced Biogas Production from Thermophilic Anaerobic Digestion of Poultry Slaughterhouse Sludge: Effect of Thermal Pretreatment and Micronutrients Supplementation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Poultry slaughter effluents contain biodegradable organics, which include blood, feathers, viscera, soft tissues removed during trimming and cutting, bones, and soil. Slaughterhouse sludge usually contains many of these compounds and a high concentration of pathogenic microorganisms. In this study, the influence of thermal pretreatment on the conversion of mesophilic anaerobic digestion (MAD) to thermophilic anaerobic digestion (TAD) was evaluated, and micronutrient supplementation (Fe, Co, Ni, and Mo) to improve the production of biogas from poultry slaughter sludge. Six experimental stages were carried out, sludge sampling and characterization, application of thermal pretreatment, the adaptation of the mesophilic to thermophilic process, operation of TAD with increased organic loading rate (OLR), selection of micronutrient doses, and semicontinuous operation of TAD with micronutrients. The application of thermal pretreatment led to notable increases in the levels of carbohydrates, lipids, and soluble proteins, and a high inactivation of pathogens was obtained. The adaptation process from MAD to TAD required equidistant increments in temperature (+ Δ5 °C) and operation time (Δ15 days), resulting in a cumulative biogas production of 144.5 L. The TAD system effectively accommodated an OLR of 5 kgVS/(m3 d) without encountering inhibition. Moreover, the initial dose of micronutrients administered during the semicontinuous operation resulted in a 16% increase in biogas production compared to the control. Analysis of kinetic parameters using the modified Gompertz equation consistently yielded R2 values above 0.96 in all experimental stages. Overall, the findings highlight the positive impact of micronutrient supplementation and thermal pretreatment on biogas production within an enhanced TAD system.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and analysed during the current study is confidential but are available from the corresponding author on reasonable request.

References

  1. Ruiz-Espinoza, J.E., Méndez-Contreras, J.M., Alvarado-Lassman, A., Martínez-Delgadillo, S.A.: Effect of low temperature thermal pre-treatment on the solubilization of organic matter, pathogen inactivation and mesophilic anaerobic digestion of poultry sludge. J. Environ. Sci. Health A 47(12), 1795–1802 (2012). https://doi.org/10.1080/10934529.2012.689237

    Article  Google Scholar 

  2. Khawer, M.U.B., Naqvi, S.R., Ali, I., Arshad, M., Juchelková, D., Anjum, M.W., Naqvi, M.: Anaerobic digestion of sewage sludge for biogas & biohydrogen production: State-of-the-art trends and prospects. Fuel 329, 125416 (2022). https://doi.org/10.1016/j.fuel.2022.125416

    Article  Google Scholar 

  3. Siddiki, S.Y.A., Uddin, M.N., Mofijur, M., Fattah, I.M.R., Ong, H.C., Lam, S.S., Ahmed, S.F.: Theoretical calculation of biogas production and greenhouse gas emission reduction potential of livestock, poultry and slaughterhouse waste in Bangladesh. J. Environ. Chem. Eng. 9(3), 105204 (2021). https://doi.org/10.1016/j.jece.2021.105204

    Article  Google Scholar 

  4. Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., Wei, F., Zhou, W.: Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 25, 49–56 (2018). https://doi.org/10.1016/j.biortech.2017.12.018

    Article  Google Scholar 

  5. Nguyen, V.K., Chaudhary, D.K., Dahal, R.H., Trinh, N.H., Kim, J., Chang, S.W., Nguyen, D.D.: Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel 285, 119105 (2021). https://doi.org/10.1016/j.fuel.2020.119105

    Article  Google Scholar 

  6. Gebreeyessus, G.D.: Effect of anaerobic digestion temperature on sludge quality. Waste Biomass Valori. 11(5), 1851–1861 (2020). https://doi.org/10.1007/s12649-018-0539-8

    Article  Google Scholar 

  7. Barber, W., Schroedel, R., Shimada, T., Spalding, S., Whitlock, D., Williams, M.: Fact sheet: high performance anaerobic digestion. Wat Environ Fed (2019) WSEC-2019-FS-014

  8. Bi, S., Westerholm, M., Qiao, W., Mahdy, A., **ong, L., Yin, D., Fan, R., Dach, J., Dong, R.: Enhanced methanogenic performance and metabolic pathway of high solid anaerobic digestion of chicken manure by Fe2+ and Ni2+ supplementation. Waste Manag. 94, 10–17 (2019). https://doi.org/10.1016/j.wasman.2019.05.036

    Article  Google Scholar 

  9. Ortega-Martínez, E., Chamy, R., Jeison, D.: Thermal pre-treatment: getting some insights on the formation of recalcitrant compounds and their effects on anaerobic digestion. J. Environ. Manage. 282, 111940 (2021). https://doi.org/10.1016/j.jenvman.2021.111940

    Article  Google Scholar 

  10. Nava-Valente, N., Del Ángel-Coronel, O.A., Atenodoro-Alonso, J., López-Escobar, L.A.: Effect of thermal and acid pre-treatment on increasing organic loading rate of anaerobic digestion of coffee pulp for biogas production. Biomass Convers. Biorefin. (2021). https://doi.org/10.1007/s13399-021-01529-3

    Article  Google Scholar 

  11. Wang, K., Yun, S., **ng, T., Li, B., Abbas, Y., Liu, X.: Binary and ternary trace elements to enhance anaerobic digestion of cattle manure: focusing on kinetic models for biogas production and digestate utilization. Bioresour. Technol. 323, 124571 (2021). https://doi.org/10.1016/j.biortech.2020.124571

    Article  Google Scholar 

  12. Chen, J., Yun, S., Shi, J., Wang, Z., Abbas, Y., Wang, K., Han, F., Jia, B., Xu, H., **ng, T., Li, B.: Role of biomass-derived carbon-based composite accelerants in enhanced anaerobic digestion: focusing on biogas yield, fertilizer utilization, and density functional theory calculations. Bioresour. Technol. 307, 123204 (2020). https://doi.org/10.1016/j.biortech.2020.123204

    Article  Google Scholar 

  13. Hendriks, A.T.W.M., Van Lier, J.B., De Kreuk, M.K.: Growth media in anaerobic fermentative processes: the underestimated potential of thermophilic fermentation and anaerobic digestion. Biotechnol. Adv. 36(1), 1–13 (2018). https://doi.org/10.1016/j.biotechadv.2017.08.004

    Article  Google Scholar 

  14. Ortner, M., Rameder, M., Rachbauer, L., Bochmann, G., Fuchs, W.: Bioavailability of essential trace elements and their impact on anaerobic digestion of slaughterhouse waste. Biochem. Eng. J. 99, 107–113 (2015). https://doi.org/10.1016/j.bej.2015.03.021

    Article  Google Scholar 

  15. Banks, C.J., Zhang, Y., Jiang, Y., Heaven, S.: Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresour. Technol. 104, 127–135 (2012). https://doi.org/10.1016/j.biortech.2011.10.068

    Article  Google Scholar 

  16. Jiang, X., Lyu, Q., Bi, L., Liu, Y., **e, Y., Ji, G., Yan, Z.: Improvement of sewage sludge anaerobic digestion through synergistic effect combined trace elements enhancer with enzyme pretreatment and microbial community response. Chemosphere 286, 131356 (2022). https://doi.org/10.1016/j.chemosphere.2021.131356

    Article  Google Scholar 

  17. Moestedt, J., Nordell, E., Yekta, S.S., Lundgren, J., Martí, M., Sundberg, C., Ejlertsson, J., Svensson, B.H., Bj¨orn, A.: Effects of trace element addition on process stability during anaerobic co-digestion of OFMSW and slaughterhouse waste. Waste Manage. 47, 11–20 (2016). https://doi.org/10.1016/j.wasman.2015.03.007

    Article  Google Scholar 

  18. Papirio, S.: Coupling acid pretreatment and dosing of Ni and Se enhances the biomethane potential of hazelnut skin. J. Clean. Prod. 262, 121407 (2020). https://doi.org/10.1016/j.jclepro.2020.121407

    Article  Google Scholar 

  19. Zhang, W., Zhang, L., Li, A.: Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS via improving metals bioavailability. Water Res. 84, 266–277 (2015). https://doi.org/10.1016/j.watres.2015.07.010

    Article  Google Scholar 

  20. Thanh, P.M., Ketheesan, B., Yan, Z., Stuckey, D.: Trace metal speciation and bioavailability in anaerobic digestion: a review. Biotechnol. Adv. 34, 122–136 (2016). https://doi.org/10.1016/j.biotechadv.2015.12.006

    Article  Google Scholar 

  21. Nava-Valente, N., Hernández-Aguilar, E., Alvarado-Lassman, A., Méndez-Contreras, J.M.: Effect of acid pretreatment on the anaerobic codigestion of sewage sludge, chicken litter, and sugarcane waste (SCW) for biogas production. Bioenerg. Res. (2022). https://doi.org/10.1007/s12155-022-10533-y

    Article  Google Scholar 

  22. Menon, A., Wang, J.Y., Giannis, A.: Optimization of micronutrient supplement for enhancing biogas production from food waste in two-phase thermophilic anaerobic digestion. Waste Manag. 59, 465–475 (2017). https://doi.org/10.1016/j.wasman.2016.10.017

    Article  Google Scholar 

  23. Izadi, P., Izadi, P., Eldyasti, A., Cheng, C., Beckley, M.: Influence of vitamin coupled with micronutrient supplement on the biomethane production, process stability, and performance of mesophilic anaerobic digestion. Biomass Bioenerg. 141, 105706 (2020). https://doi.org/10.1016/j.biombioe.2020.105706

    Article  Google Scholar 

  24. Afroze, N., Nakhla, G., Kim, M., Yazdanpanah, A.: Effects of trace elements on digester performance and microbial community response in anaerobic digestion systems. Environ. Technol. (2022). https://doi.org/10.1080/09593330.2022.2082324

    Article  Google Scholar 

  25. American Public Health Association, American Water Works Association, & Water Environment Federation. 2017. Standard methods for the examination of water and wastewater. American Public Health Association.

  26. Gerhard, P., Murray, R.G.E., Wood, W.A., Krieg, N.R.: Methods for general and molecular bacteriology. ASM Press, Washington DC (1994)

    Google Scholar 

  27. Li, P., Li, W., Sun, M., Xu, X., Zhang, B., Sun, Y.: Evaluation of biochemical methane potential and kinetics on the anaerobic digestion of vegetable crop residues. Energies 12(1), 26 (2019). https://doi.org/10.3390/en12010026

    Article  Google Scholar 

  28. Shamurad, B., Gray, N., Petropoulos, E., Tabraiz, S., Membere, E., Sallis, P.: Predicting the effects of integrating mineral wastes in anaerobic digestion of OFMSW using first-order and Gompertz models from biomethane potential assays. Renew. Energy 152, 308–319 (2020). https://doi.org/10.1016/j.renene.2020.01.067

    Article  Google Scholar 

  29. Wu, L.J., Li, X.X., Yang, F.: One-step acquirement of superior microbial communities from mesophilic digested sludge to upgrade anaerobic digestion. Chemosphere 263, 128047 (2021). https://doi.org/10.1016/j.chemosphere.2020.128047

    Article  Google Scholar 

  30. Kovalovszki, A., Treu, L., Ellegaard, L., Luo, G., Angelidaki, I.: Modeling temperature response in bioenergy production: novel solution to a common challenge of anaerobic digestion. Appl. Energy 263, 114646 (2020). https://doi.org/10.1016/j.apenergy.2020.114646

    Article  Google Scholar 

  31. U.S. EPA (1994b). A Plain English Guide to the EPA Part 503 Biosolids Rule (No. EPA/ 832/R-93/003). U.S. EPA.

  32. Xu, S., Wang, C., Sun, Y., Luo, L., Wong, J.W.: Assessing the stability of codigesting sewage sludge with pig manure under different mixing ratios. Waste Mange. 114, 299–306 (2020). https://doi.org/10.1016/j.wasman.2020.07.003

    Article  Google Scholar 

  33. Megido, L., Negral, L., Fernández-Nava, Y., Suárez-Peña, B., Ormaechea, P., Díaz-Caneja, P., Castrillón, L., Marañón, E.: Impact of organic loading rate and reactor design on thermophilic anaerobic digestion of mixed supermarket waste. Waste Manag. 123, 52–59 (2021). https://doi.org/10.1016/j.wasman.2021.01.012

    Article  Google Scholar 

  34. Nkuna, R., Roopnarain, A., Rashama, C., Adeleke, R.: Insights into organic loading rates of anaerobic digestion for biogas production: a review. Crit. Rev. Biotechnol. 42(4), 487–507 (2022)

    Google Scholar 

  35. Duan, N., Zhang, D., Lin, C., Zhang, Y., Zhao, L., Liu, H., Liu, Z.: Effect of organic loading rate on anaerobic digestion of pig manure: Methane production, mass flow, reactor scale and heating scenarios. J. Environ. Manage. 231, 646–652 (2019). https://doi.org/10.1016/j.jenvman.2018.10.062

    Article  Google Scholar 

  36. Weiland, P.: Biogas production: current state and perspectives. Appl. Microbiol. 85(4), 849–860 (2010). https://doi.org/10.1007/s00253-009-2246-7

    Article  Google Scholar 

  37. Šafarič, L., Yekta, S.S., Svensson, B.H., Schnürer, A., Bastviken, D., Björn, A.: Effect of cobalt, nickel, and selenium/tungsten deficiency on mesophilic anaerobic digestion of chemically defined soluble organic compounds. Microorganisms. 8(4), 1–19 (2020). https://doi.org/10.3390/microorganisms8040598

    Article  Google Scholar 

  38. Cao, Z., Jung, D., Olszewski, M.P., Arauzo, P.J., Kruse, A.: Hydrothermal carbonization of biogas digestate: effect of digestate origin and process conditions. Waste Manage. 100, 138–150 (2019). https://doi.org/10.1016/j.wasman.2019.09.009

    Article  Google Scholar 

  39. Jenkins, S.R., Morgan, J.M., Sawyer, C.L.: Measuring anaerobic sludge digestion and growth by a simple alkalimetric titration. J. Water Pollut. Con. F. 55(5), 448–453 (1983)

    Google Scholar 

  40. Lizama, A.C., Figueiras, C.C., Pedreguera, A.Z., Ruíz, J.E.: Effect of ultrasonic pretreatment on the semicontinuous anaerobic digestion of waste activated sludge with increasing loading rates. Int Biodeter Biodgr. 130, 32–39 (2018). https://doi.org/10.1016/j.ibiod.2018.03.013

    Article  Google Scholar 

  41. Zhang, Q., Zeng, L., Fu, X., Pan, F., Shi, X., Wang, T.: Comparison of anaerobic co-digestion of pig manure and sludge at different mixing ratios at thermophilic and mesophilic temperatures. Bioresour. Technol. 337, 125425 (2021). https://doi.org/10.1016/j.biortech.2021.125425

    Article  Google Scholar 

  42. Lv, Z., Wu, X., Zhou, B., Wang, Y., Sun, Y., Wang, Y., Chen, Z., Zhang, J.: Effect of one step temperature increment from mesophilic to thermophilic anaerobic digestion on the linked pattern between bacterial and methanogenic communities. Bioresource Technol. 292, 121968 (2019). https://doi.org/10.1016/j.biortech.2019.121968

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from Tecnológico Nacional de México Campus Orizaba.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. JMM-C, JA-A, LALE, and NN-V: Material preparation, data collection and analysis were performed. JMM-C and NN-V: The first draft of the manuscript was written and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Noemi Nava-Valente.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez-Contreras, J.M., Atenodoro-Alonso, J., López-Escobar, L.A. et al. Enhanced Biogas Production from Thermophilic Anaerobic Digestion of Poultry Slaughterhouse Sludge: Effect of Thermal Pretreatment and Micronutrients Supplementation. Waste Biomass Valor 15, 2201–2214 (2024). https://doi.org/10.1007/s12649-023-02277-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02277-3

Keywords

Navigation