Log in

Enhanced Biogas Production from Human and Agro-Waste: Waste to Wealth Initiative

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

High population spikes have been projected for develo** countries in the nearest future. This development is a source of concern as there are no visible futuristic economic agenda to douse the menace of population growth in a dying economy. This paper is a blueprint for standalone energy users and the built industry to improve energy generation using sustainable materials, i.e., human and agro waste. This research examines two popular agro waste i.e., plantain peel and Siam leave. The concept of bio-digester septic tank design (BDSTD) was also discussed. Biogas from plantain-faecal (PF) had a higher cumulative production than biogas from Siam-faecal (SF) because plantain biomass aids initial bio-digestion of the faecal samples due to its inherent chemical components which are important to breaking undigested food component in the faecal mass. In this wise, the chemical component in Siam biomass cannot easily break undigested food components in the faecal mass. However, SF creates a better enabling environment for microbial growth that could lead to about 400% biogas generation over PF and 160% biogas generation over pure faecal (TF). Despite this feat, the caveat for improved daily gas production rate in SF is hinged on pre-processing of the faecal mass. With the aid of machine learning, it was revealed that higher retention time could be a natural way of pre-processing needed by the Siam biomass. This concept led to the design of the BDSTD which was technically hinged on cross-sectional partitions. Plantain biomass is recommended for four partitions BDSTD design as there would be shorter retention time in the overflow chamber while the Siam biomass is recommended for > 4 partitions BDSTD designs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Oteman, M., Wiering, M., Helderman, J.K.: The institutional space of community initiatives for renewable energy: a comparative case study of the Netherlands, Germany and Denmark. Energy Sustain. Soc. 4(1), 1–17 (2014)

    Google Scholar 

  2. Abanihi, V.K., Ikheloa, S.O., Okodede, F.: Overview of the Nigerian power sector. Am. J. Eng. Res. 7(5), 253–263 (2018)

    Google Scholar 

  3. Aliyu, A.S., Dada, J.O., Adam, I.K.: Current status and future prospects of renewable energy in Nigeria. Renew. Sustain. Energy Rev. 48, 336–346 (2015)

    Article  Google Scholar 

  4. Akinbami, J., Lawal, A.: Opportunities and challenges to electrical energy conservation and CO2 emissions reduction in Nigeria’s building sector. Cities Clim. Change 2, 345–365 (2009)

    Google Scholar 

  5. IRENA: Renewable Capacity Statistics 2018, https://www.irena.org/publications/2018/mar/renewable-capacity-statistics-2018 (2018). Accessed 23 Sept 2022

  6. Deublein, D., Steinhauser, A.: Biogas from Waste and Renewable Resources: An Introduction, pp. 89–290. Wiley-VCH, Weinheim (2008)

    Book  Google Scholar 

  7. Mukherjee, S., Sensharma, D., Chen, K.J., Zaworotko, M.J.: Crystal engineering of porous coordination networks to enable separation of C2 hydrocarbons. Pubs. Rsc. Org 56, 10519 (2020). https://doi.org/10.1039/D0CC04645K

    Article  Google Scholar 

  8. Perera, F.: Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. Int. J. Environ. Res. Public Health 15(1), 16 (2018). https://doi.org/10.3390/IJERPH15010016

    Article  Google Scholar 

  9. Ilori, M.O., Adebusoye, S.A., Iawal, A.K., Awotiwon, O.A.: Production of biogas from banana and plantain peels. Adv. Environ. Biol. 1, 33–39 (2007)

    Google Scholar 

  10. Andriani, D., Wresta, A., Saepudin, A., Prawara, B.: A review of recycling of human excreta to energy through biogas generation: Indonesia case. Energy Procedia 68, 219–225 (2015)

    Article  Google Scholar 

  11. Akindayo, A.S.: Municipal solid waste management and the inland water bodies: Nigerian perspectives. https://doi.org/10.5772/intechopen (2019)

  12. Omer, A.: Biogas technology for sustainable energy generation: development and perspectives. MOJ App Bio Biomech. 1(4), 137–148 (2017)

    Google Scholar 

  13. Emetere, M.E., Chikwendu, L., Afolalu, S.A.: Improved biogas production from human excreta using chicken feather powder: a sustainable option to eradicating poverty. Glob. Chall. 2100117, 1–11 (2022)

    Google Scholar 

  14. National Population Commission (NPC): Figures. Accessed January, 2015. www.npc.gov.gn. (2006). Accessed 1 Aug 2022

  15. Garcıa-Aljaro, C., Blanch, A.R., Campos, C., Jofre, J., Lucena, F.: Pathogens, faecal indicators and human-specific microbial source-tracking markers in sewage. J. Appl. Microbiol. 126, 701–717 (2018)

    Article  Google Scholar 

  16. Auchtung, T.A., Fofanova, T.Y., Stewart, C.J., Nash, A.K., Wong, M.C., Gesell, J.R., Auchtung, J.M., Ajami, N.J., Petrosino, J.F.: Investigating colonization of the healthy adult gastrointestinal tract by fungi. mSphere 3(2), 1–16 (2018)

    Article  Google Scholar 

  17. Forbes, D., Ee, L., Camer-Pesci, P., Ward, P.B.: Faecal candida and diarrhoeal. Arch. Dis. Child. 84(4), 328–331 (2001)

    Article  Google Scholar 

  18. Kumari, S., Ambasta, S.K.: Isolation of microorganisms from stool sample of diarrhoea patient and effect of antibiotics and herbal extract. CIBTech J. Microbiol. 2(2), 24–32 (2013)

    Google Scholar 

  19. Hallen-Adams, H.E., Suhr, M.J.: Fungi in the healthy human gastrointestinal tract. Virulence 8, 352–358 (2017)

    Article  Google Scholar 

  20. Letarov, A., Kulikov, E.: The bacteriophages in human- and animal body-associated microbial communities. J. Appl. Microbiol. 107, 1–13 (2009)

    Article  Google Scholar 

  21. Karu, N., Deng, L., Slae, M., Guo, A.C., Sajed, T., Huynh, H., Wine, E., Wishart, D.S.: A review on human fecal metabolomics: methods, applications and the human fecal metabolome database. Anal. Chim. Acta 1030, 1–24 (2018). https://doi.org/10.1016/J.ACA.2018.05.031

    Article  Google Scholar 

  22. Abdel-Shafy, H.I., Mansour, M.S.M.: Solid waste issue: sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 27(4), 1275–1290 (2018). https://doi.org/10.1016/J.EJPE.2018.07.003

    Article  Google Scholar 

  23. Penn, R., Ward, B.J., Strande, L., Maurer, M.: Review of synthetic human faeces and faecal sludge for sanitation and wastewater research. Water Res. 132, 222–240 (2018). https://doi.org/10.1016/j.watres.2017.12.063

    Article  Google Scholar 

  24. Ma, N., Guo, P., Zhang, J., He, T., Kim, S.W., Zhang, G., Ma, X.: Nutrients mediate intestinal bacteria-mucosal immune crosstalk. Front. Immunol. 9, 5 (2018). https://doi.org/10.3389/fimmu.2018.00005

    Article  Google Scholar 

  25. Volk, T., Rummel, J.D.: Mass balances for a biological life support system simulation model. Adv. Space Res. 7(4), 141–148 (1987)

    Article  Google Scholar 

  26. Wisniewski, P.J., Dowden, R.A., Campbell, S.C.: Role of dietary lipids in modulating inflammation through the gut microbiota. Nutrients 11(1), 117 (2019). https://doi.org/10.3390/NU11010117

    Article  Google Scholar 

  27. Afolabi, O.O.D., Sohail, M.: Microwaving human faecal sludge as a viable sanitation technology option for treatment and value recovery: a critical review. J. Environ. Manag. 187, 401–415 (2017). https://doi.org/10.1016/J.JENVMAN.2016.10.067

    Article  Google Scholar 

  28. Krueger, B., Fowler, G., M. T.-J. of E.: Faecal sludge pyrolysis: Understanding the relationships between organic composition and thermal decomposition. Elsevier. https://www.sciencedirect.com/science/article/pii/S0301479721015188. (2021). Accessed 7 June 2022

  29. Yan, Z., Zhao, H., Zhao, Y., Zhu, Q., Qiao, R., Ren, H., Zhang, Y.: An efficient method for extracting microplastics from feces of different species. J. Hazard. Mater. 384, 121489 (2020). https://doi.org/10.1016/J.JHAZMAT.2019.121489

    Article  Google Scholar 

  30. Zhao, X., McHugh, C., Coffey, S.R., Jimenez, D.A., Adams, E., Carroll, J.B., Usdin, K.: Stool is a sensitive and noninvasive source of DNA for monitoring expansion in repeat expansion disease mouse models. Dis. Models Mech. (2022). https://doi.org/10.1242/DMM.049453

    Article  Google Scholar 

  31. Bellali, S., Lagier, J.C., Raoult, D., Khalil, J.B.: Among live and dead bacteria, the optimization of sample collection and processing remains essential in recovering gut microbiota components. Front. Microbiol. 10, 1606 (2019). https://doi.org/10.3389/FMICB.2019.01606/BIBTEX

    Article  Google Scholar 

  32. Ser, H.L., Letchumanan, V., Goh, B.H., Wong, S.H., Lee, L.H.: The use of fecal microbiome transplant in treating human diseases: too early for poop? Front. Microbiol. 12, 1005 (2021). https://doi.org/10.3389/FMICB.2021.519836/BIBTEX

    Article  Google Scholar 

  33. Cyprowski, M., Stobnicka-Kupiec, A., Ławniczek-Wałczyk, A., Bakal-Kijek, A., Gołofit-Szymczak, M., Górny, R.L.: Anaerobic bacteria in wastewater treatment plant. Int. Arch. Occup. Environ. Health 91(5), 571 (2018). https://doi.org/10.1007/S00420-018-1307-6

    Article  Google Scholar 

  34. Greene, J.P.: Degradation and biodegradation standards for biodegradable food packaging materials. Ref. Modul. Food Sci. (2019). https://doi.org/10.1016/B978-0-08-100596-5.22437-2

    Article  Google Scholar 

  35. EPA: EPA Releases 2021 Data Collected under Greenhouse Gas Reporting Program. https://www.epa.gov/newsreleases/epa-releases-2021-data-collected-under-greenhouse-gas-reporting-program (2021). Accessed 23 Sept 2022

  36. Enzmann, F., Mayer, F., Rother, M., Holtmann, D.: Methanogens: biochemical background and biotechnological applications. AMB Express 8(1), 1 (2018). https://doi.org/10.1186/S13568-017-0531-X

    Article  Google Scholar 

  37. Alemneh, T.: Review on methanogenesis and its role. World J. Agric. Soil Sci. 6(2), 50 (2020). https://doi.org/10.33552/WJASS.2020.06.000632

    Article  Google Scholar 

  38. Buan, N.R.: Methanogens: pushing the boundaries of biology. Emerg. Top. Life Sci. 2(4), 629 (2018). https://doi.org/10.1042/ETLS20180031

    Article  Google Scholar 

  39. Amin, F., Khalid, H., El-Mashad, H., C. C.-S. of T. T.: Functions of bacteria and archaea participating in the bioconversion of organic waste for methane production. Elsevier. https://www.sciencedirect.com/science/article/pii/S0048969720365372 (2021). Accessed 7 June 2022

  40. Knobbe, T., Douwes, R., Kremer, D., J. S.-J. of clinical: altered gut microbial fermentation and colonization with Methanobrevibacter smithii in renal transplant recipients. Mdpi.Com. https://www.mdpi.com/641550 (2020). Accessed 7 June 2022

  41. Chong, P.P., Chin, V.K., Looi, C.Y., Wong, W.F., Madhavan, P., Yong, V.C.: The microbiome and irritable bowel syndrome: a review on the pathophysiology, current research and future therapy. Front. Microbiol. 10, 100056 (2019). https://doi.org/10.3389/FMICB.2019.01136/FULL

    Article  Google Scholar 

  42. Camara, A., Konate, S., Tidjani Alou, M., Kodio, A., Togo, A.H., Cortaredona, S., Henrissat, B., Thera, M.A., Doumbo, O.K., Raoult, D., Million, M.: Clinical evidence of the role of Methanobrevibacter smithii in severe acute malnutrition. Sci. Rep. 11(1), 1–11 (2021). https://doi.org/10.1038/s41598-021-84641-8

    Article  Google Scholar 

  43. Wainaina, S., Lukitawesa, Kumar-Awasthi, M., Taherzadeh, M.J.: Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: a critical review. Bioengineered 10(1), 437–458 (2019). https://doi.org/10.1080/21655979.2019.1673937

    Article  Google Scholar 

  44. Saber, M., Khitous, M., Kadir, L., Abada, S., N. T.-B.: Enhancement of organic household waste anaerobic digestion performances in a thermophilic pilot digester. Elsevier. https://www.sciencedirect.com/science/article/pii/S0961953420304657 (2021). Accessed 7 June 2022

  45. Yang, B., Yin, F., Wang, C., Zhao, X., Liu, J., Wu, K., Yang, H., Zhang, W.: Construction of biogas metabolic pathway in a low-temperature biogas fermentation system. Energy Sci. Eng. 7(6), 3160–3173 (2019). https://doi.org/10.1002/ESE3.488

    Article  Google Scholar 

  46. Modestra, J.A., Katakojwala, R., Mohan, S.V.: CO2 fermentation to short chain fatty acids using selectively enriched chemolithoautotrophic acetogenic bacteria. Chem. Eng. J. 394, 124759 (2020). https://doi.org/10.1016/J.CEJ.2020.124759

    Article  Google Scholar 

  47. Cai, M., Wilkins, D., Chen, J., Ng, S.K., Lu, H., Jia, Y., Lee, P.K.H.: Metagenomic reconstruction of key anaerobic digestion pathways in municipal sludge and industrial wastewater biogas-producing systems. Front. Microbiol. 7, 778 (2016). https://doi.org/10.3389/FMICB.2016.00778/BIBTEX

    Article  Google Scholar 

  48. Menzel, T., Neubauer, P., Junne, S.: Role of microbial hydrolysis in anaerobic digestion. Energies 13, 5555 (2020). https://doi.org/10.3390/en13215555

    Article  Google Scholar 

  49. Zhang, B., Ning, D., Yang, Y., Nostrand, J. van, research, J. Z.-W.: Biodegradability of wastewater determines microbial assembly mechanisms in full-scale wastewater treatment plants. Elsevier. https://www.sciencedirect.com/science/article/pii/S0043135419310504 (2020). Accessed 7 June 2022

  50. Paulo Alfons, J.M., Stams Diana, Z., Sousa, L.M.: Methanogens, sulphate and heavy metals: a complex system. Rev. Environ. Sci. Bio/Technol. (2015). https://doi.org/10.1007/s11157-015-9387-1

    Article  Google Scholar 

  51. Vaisakh, M.N., Pandey, A.: The invasive weed with healing properties: a review on Chromolaena odorata. Int. J. Pharm. Sci. Res. 3(1), 80–81 (2012)

    Google Scholar 

  52. Okorie, D.O., Eleazu, C.O., Nwosu, P.: Nutrient and heavy metal composition of plantain (Musa paradisiaca) and banana (Musa paradisiaca) peels. J. Nutr. Food Sci. 5, 370 (2015). https://doi.org/10.4172/2155-9600.1000370

    Article  Google Scholar 

  53. Kirumira Julius: Manage your waste with bio-digester, https://www.pinterest.com/pin/152348399881892431/ (2019)

  54. Scott Leahy: The laundry alternative to learn about septic tanks. https://EzineArticles.com/expert/Scott_Leahy/24622 (2022)

  55. Tilley, E., Ulrich, L., Lüthi, C., Reymond, P., Zurbrügg, C.: Compendium of Sanitation Systems and Technologies, 2nd edn. Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Duebendorf (2014)

    Google Scholar 

  56. Valli Sarvani: Peepal waste managers set up a biogas plant. https://fusion.werindia.com/innovation/peepal-waste-managers-set-up-a-biogas-plant (2020)

  57. Carol, R.: Microbial respiration, the engine of ocean deoxygenation. Front. Mar. Sci. (2019). https://doi.org/10.3389/fmars.2018.00533

    Article  Google Scholar 

  58. Cordero, P.R., Bayly, K., Man Leung, P., Huang, C., Islam, Z.F., Schittenhelm, R.B., King, G.M., Greening, C.: Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 13, 2868–2881 (2019)

    Article  Google Scholar 

  59. Meyer, O., Fiebig, K.: Enzymes oxidizing carbon monoxide. In: Degn, H., Cox, R.P., Toftlund, H. (eds.) Gas Enzymology. Springer, Dordrecht (1985)

    Google Scholar 

  60. Kraft, B., Strous, M., Tegetmeyer, H.E.: Microbial nitrate respiration–genes, enzymes and environmental distribution. J. Biotechnol. 155(1), 104–117 (2011). https://doi.org/10.1016/j.jbiotec.2010.12.025

    Article  Google Scholar 

  61. Dahunsi, S.O., Oranusi, S., Efeovbokhan, V.E., Olayanju, A., Zahedi, S., Ojediran, J.O., Izebere, J.O., Aladegboye, O.J.: Anaerobic conversion of Chromolaena odorata (Siam weed) to biogas. Energy Rep. 4, 691–700 (2018). https://doi.org/10.1016/j.egyr.2018.10.006

    Article  Google Scholar 

  62. Devi, M.K., Manikandan, S., Oviyapriya, M., Selvaraj, M., Assiri, M.A., Vickram, S., Subbaiya, R., Karmegam, N., Ravindran, B., Chang, S.W., Awasthi, M.K.: Recent advances in biogas production using Agro-Industrial Waste: a comprehensive review outlook of Techno-Economic analysis. Bioresource Technol. 363, 127871 (2022). https://doi.org/10.1016/j.biortech.2022.127871

    Article  Google Scholar 

  63. Manjappa, K.: Use of eupatorium (Chromolaena odorata L.) in biogas production. Int. J. Sci. Eng. Res. 5(11), 869–873 (2014)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Emetere.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emetere, M.E., Oniha, M.I., Chikwendu, L. et al. Enhanced Biogas Production from Human and Agro-Waste: Waste to Wealth Initiative. Waste Biomass Valor 15, 87–100 (2024). https://doi.org/10.1007/s12649-023-02139-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02139-y

Keywords

Navigation