Log in

Valorization of Sugarcane Bagasse into Fermentable Sugars by Efficient Fungal Cellulolytic Enzyme Complex

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The study aimed to identify an efficient cellulase producing fungus and to evaluate its potential for saccharification of sugarcane bagasse. A total of 17 fungi were isolated and among these, five isolates (JS4, JS5, JS6, JS8 and JS17) showed high cellulolytic index and were tentatively identified to be belonging to genera, i.e., Aspergillus and Penicillium. The fungal isolate JS7 exhibited significantly high total cellulase (43.52 U/L), endoglucanase (171.98 U/L) and β-glucosidase (78.65 U/L) activities, when grown under liquid shake flask conditions. BLAST analysis, multiple sequences and phylogenetic analysis showed that the isolate JS7 was highly similar with fungal strain Penicillium mallochii from gene bank. The enzyme extract from P. mallochii was concentrated using tangential ultrafiltration with 67.39% recovery of filter paper activity (total cellulase activity) and 1.75-fold purification. The saccharification of alkali pre-treated sugarcane bagasse with cellulase resulted in maximum reducing sugar yield of 651.60 mg/g with saccharification efficiency of 78.29%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during this study are included in this published article.

References

  1. Bezerra, T.L., Ragauskas, A.J.: A review of sugarcane bagasse for second generation bioethanol and biopower production. Biofuels Bioprod. Biorefin. 10, 634–647 (2016)

    Article  Google Scholar 

  2. Karp, S., Woiciechowski, A.L., Thomaz-Soccol, V., Soccol, C.: Pre-treatment strategies for delignification of sugarcane bagasse: a review. Braz. Arch. Biol. Technol. 56, 679–689 (2013)

    Article  Google Scholar 

  3. Thite, V.S., Nerurkar, A.S.: Valorization of sugarcane bagasse by chemical pretreatment and enzyme mediated deconstruction. Sci. Rep. 9, 1–14 (2019)

    Article  Google Scholar 

  4. Rosales-Calderon, O., Arantes, V.: A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnol. Biofuels 12, 1–58 (2019)

    Article  Google Scholar 

  5. Baruah, J., Nath, B.K., Sharma, R., Kumar, S., Deka, R.C., Baruah, D.C., Kalita, E.: Recent trends in the pre-treatment of lignocellulosic biomass for value-added products. Front Energy Res. 6, 1–19 (2018)

    Article  Google Scholar 

  6. Ascencio, J.J., Chandel, A.K., Philippini, R.R., da Silva, S.S.: Comparative study of cellulosic sugars production from sugarcane bagasse after dilute nitric acid, dilute sodium hydroxide and sequential nitric acid-sodium hydroxide pretreatment. Biomass Convers. Biorefin. 10, 813–822 (2020)

    Article  Google Scholar 

  7. Junior, W.G.M., Pacheco, T.F., Gao, S., Martins, P.A., Guisán, J.M., Caetano, N.S.: Sugarcane bagasse saccharification by enzymatic hydrolysis using endocellulase and β-glucosidase immobilized on different supports. Catalysts 11, 1–13 (2021)

    Google Scholar 

  8. Juturu, V., Wu, J.C.: Microbial cellulases: engineering, production and applications. Renew. Sustain. Energy Rev. 33, 188–203 (2014)

    Article  Google Scholar 

  9. Maitan-Alfenas, G.P., Visser, E.M., Alfenas, R.F., Nogueira, B.R.G., de Campos, G.G., Milagres, A.F., de Vries, R.P., Guimarães, V.M.: The influence of pretreatment methods on saccharification of sugarcane bagasse by an enzyme extract from Chrysoporthe cubensis and commercial cocktails: a comparative study. Bioresour. Technol. 192, 670–676 (2015)

    Article  Google Scholar 

  10. Valle-Perez, A.U., Flores-Cosio, G., Amaya-Delgado, L.: Bioconversion of agave bagasse to produce cellulases and xylanases by Penicillium citrinum and Aspergillus fumigatus in solid-state fermentation. Waste Biomass Valori. 12, 5885–5897 (2021)

    Article  Google Scholar 

  11. Legodi, L.M., Grange, D.L., Jansen van Rensburg, E.L., Ncube, I.: Isolation of cellulose degrading fungi from decaying banana pseudostem and Strelitzia alba. Enzyme Res. 2019, 1–10 (2019)

    Article  Google Scholar 

  12. Coronado-Ruiz, C., Avendaño, R., Escudero-Leyva, E., Conejo-Barboza, G., Chaverri, P., Chavarría, M.: Two new cellulolytic fungal species isolated from a 19th-century art collection. Sci. Rep. 8, 1–9 (2018)

    Article  Google Scholar 

  13. Bekele, A., Abena, T., Habteyohannes, A., Nugissie, A., Gudeta, F., Getie, T., Kelel, M., Berhanu, A.: Isolation and characterization of efficient cellulolytic fungi from degraded wood and industrial samples. Afr. J. Biotechnol. 14, 3228–3234 (2015)

    Article  Google Scholar 

  14. Cunha, F.M., Esperança, M.N., Zangirolami, T.C., Badin, A.C., Farinas, C.S.: Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase. Bioresour. Technol. 112, 270–274 (2012)

    Article  Google Scholar 

  15. Mandels, M., Sternberg, D.: Recent advances in cellulase technology. Ferment. Technol. 54, 256–286 (1976)

    Google Scholar 

  16. Mandels, M., Andreotti, R., Roche, C.: Measurement of saccharifying cellulase. Biotechnol. Bioeng. Symp. 6, 21–33 (1976)

    Google Scholar 

  17. Wood, T.M., Bhatt, K.M.: Methods of measuring cellulase activities. Methods Enzymol. 160, 87–112 (1988)

    Article  Google Scholar 

  18. Peiji, G.: A simple method for estimating cellobiase activity by determination of reducing sugar. Biotechnol. Bioeng. 29, 903–905 (1987)

    Article  Google Scholar 

  19. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    Article  Google Scholar 

  20. Kimura, M.: A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980)

    Article  Google Scholar 

  21. Kumar, S., Stecher, G., Tamura, K.: MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2015)

  22. Felsenstein, J.: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985)

    Article  Google Scholar 

  23. Talha, Z., Ding, W., Mehryar, E., Hassan, M., Bi, J.: Alkaline pretreatment of sugarcane bagasse and filter mud codigested to improve biomethane production. BioMed. Res. Int. 2016, 1–10 (2016)

    Article  Google Scholar 

  24. Wise, L.E., Murphy, M., Addeieco, A.A.: Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on hemicelluloses. Paper Trade J. 122, 35–45 (1946)

    Google Scholar 

  25. Browning, B.L.: Methods of Wood Chemistry. Wiley, New York (1967)

    Google Scholar 

  26. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluirter, J., Templeton, D., Crocker, D.: Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory, Department of Energy, US, NREL/TP-510-42618 (2008)

  27. Mkhize, T., Mthembu, L.D., Gupta, R., Kaur, A., Kuhad, R.C., Reddy, P., Deenadayalu, N.: Enzymatic saccharification of acid/alkali pre-treated, mill-run, and depithed sugarcane bagasse. BioResources 11, 6267–6285 (2016)

    Article  Google Scholar 

  28. Nelson, N.: A photometric adaptation of the somogyi method for the determination of glucose. J. Biol. Chem. 153, 375–380 (1944)

    Article  Google Scholar 

  29. Abo-State, M.A., Ragab, A.M.E., Gendy, N.E.L., Farahat, L.A., Madian, H.R.: Effect of different pre-treatments on Egyptian sugar-cane bagasse saccharification and bioethanol production. Egypt J. Pet. 22, 161–167 (2013)

    Article  Google Scholar 

  30. Khalid, M., Yang, W.J., Kishwar, N.R., Zahid, I., Abdullah, A.G.: Study of cellulolytic soil fungi and two nova species and new medium. J. Zhejiang. Univ. Sci. B. 7, 459–466 (2006)

    Article  Google Scholar 

  31. Murti, M.W., Sudarsono, M.A., Suryadi, H.: Isolation of cellulolytic fungi and utilization of its cellulolytic activity for microcrystalline cellulose preparation from water hyacinth (Eichhornia crassipes). Pharmacogn. J. 10, 1082–1088 (2018)

    Article  Google Scholar 

  32. Yao, G., Li, Z., Gao, L., Wu, R., Kan, Q., Liu, G., Qu, Y.: Redesigning the regulatory pathway to enhance cellulase production in Penicillium oxalicum. Biotechnol. Biofuels 8, 1–16 (2015)

    Article  Google Scholar 

  33. Mesa, L., Salvador, C.A., Herrera, M., Carrazana, D.I., Gonzalez, E.: Cellulases by Penicillium sp. in different culture conditions. Bioethanol 2, 84–93 (2016)

    Article  Google Scholar 

  34. Maeda, R.N., Barcelos, C.A., Anna, L.M.M.S., Pereira, N.J.: Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugarcane bagasse for second generation ethanol production by fed batch operation. J. Biotechnol. 163, 38–44 (2013)

    Article  Google Scholar 

  35. Goldbeck, R., Ramos, M.M., Pereira, G.A.G., Maugeri-Filho, F.: Cellulase production from a new strain Acremonium strictum isolated from the Brazilian biome using different substrates. Bioresour. Technol. 128, 797–803 (2013)

    Article  Google Scholar 

  36. Pinotti, L.M., Paulino, L.B., Agnezi, J.C., dos Santos, P.A., da Silva, H.N.L., Zavarise, J.P., Salomão, G.S.B., Tardioli, P.W.: Evaluation of different fungi and bacteria strains for production of cellulases by submerged fermentation using sugarcane bagasse as carbon source: effect of substrate concentration and cultivation temperature. Afr. J. Biotechnol. 19, 625–635 (2020)

    Article  Google Scholar 

  37. Mkumbe, B.S., Sajidan, A.P., Susilowati, A.: Phylogenetic analysis based on internal transcribed spacer region (ITS1–5.8S-ITS2) of Aspergillus niger producing phytase from Indonesia. AIP Conf. Proc. 2014, 1–9 (2018)

    Google Scholar 

  38. Kim, J.S., Lee, Y.Y., Kim, T.H.: A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 199, 42–48 (2016)

    Article  Google Scholar 

  39. Rocha, G.J.M., Martín, C., da Silva, V.F.N., Gómez, E.O., Gonçalves, A.R.: Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification. Bioresour. Technol. 111, 447–452 (2012)

    Article  Google Scholar 

  40. Frassatto, P.A., Casciatori, F.P., Thoméo, J.C., Gomes, E., Boscolo, M., da Silva, R.: β-glucosidase production by Trichoderma reesei and Thermoascus aurantiacus by solid state cultivation and application of enzymatic cocktail for saccharification of sugarcane bagasse. Biomass Convers. Biorefin. 11, 503–513 (2021)

    Article  Google Scholar 

  41. Maeda, R.N., Serpab, V.I., Rochaa, V.A.L., Mesquitab, R.A.A., Annac, L.M.M.S., de Castroc, A.M., Driemeierd, C.E., Pereira, N.J., Polikarpov, I.: Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem. 46, 1196–1201 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Head, Department of Renewable Energy Engineering, P.A.U., Ludhiana for providing instrumentation facilities to pursue this research work.

Funding

The authors are thankful for the grants received from the DST-INSPIRE (Innovation in Science Pursuit for Inspired Research), Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

JK has performed the experiments, analysed and written the manuscript. MST has conceptualized, supervised the study and edited the manuscript. AK and GSK have supervised the microbiological studies. GSS has provided the biomass of sugarcane for conducting the experiments. MJ has been involved in the statistical analysis of the data. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Monica Sachdeva Taggar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, J., Taggar, M.S., Kalia, A. et al. Valorization of Sugarcane Bagasse into Fermentable Sugars by Efficient Fungal Cellulolytic Enzyme Complex. Waste Biomass Valor 14, 963–975 (2023). https://doi.org/10.1007/s12649-022-01918-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01918-3

Keywords

Navigation