Log in

Production, Optimisation and Partial Characterisation of Enzymes from Filamentous Fungi Using Dried Forage Cactus Pear as Substrate

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The forage cactus pear (Opuntia spp. and Nopalea spp.) has been sub-utilised, mostly, for ruminant feed during long periods of drought. In this study, Nopalea cochenillifera was investigated as an alternative substrate for the production of xylanases and β-glucosidases by Aspergillus niger and Rhizopus sp.

Methods

The solid-state fermentation of N. cochenillifera by Aspergillus niger and Rhizopus sp. were optimised for xylanases and β-glucosidases production using a central composite face-centered (CCF) experimental design and response surface methodology (RSM), considering the variables water activity, temperature and time. The enzymes obtained were also evaluated for their pH, temperature and storage stability.

Results

The theoretical optimum cultivation conditions were an initial water activity of 0.865 at 30 °C for 72 h. The equivalent enzymatic activities (U g−1) obtained were 355.56 (A. niger xylanase), 3456.91 (A. niger β-glucosidase), 204.57 (Rhizopus sp. xylanase) and 1630.07 (Rhizopus sp. β-glucosidase). The obtained enzymes presented good stability (~80%) at <60 °C and pH values from 4.0 to 7.0.

Conclusion

The forage cactus is a potential alternative for microbial cultivation instead of synthetic substrates of elevated costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hendriks, A.T.W.M, Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Biores. Technol. (2008). doi:10.1016/j.biortech.2008.05.027

    Google Scholar 

  2. Cheirsilpa, B., Kitcha, S.: Solid state fermentation by cellulolytic oleaginous fungi for direct conversion of lignocellulosic biomass into lipids: fed-batch and repeated-batch fermentations. Ind. Crops Prod. (2015). doi:10.1016/j.indcrop.2014.12.035

    Google Scholar 

  3. Prévot, V., Lopez, M., Copinet, E., Duchiron, F.: Comparative performance of commercial and laboratory enzymatic complexes from submerged or solid-state fermentation in lignocellulosic biomass hydrolysis. Biores. Technol. (2013). doi:10.1016/j.biortech.2012.11.135

    Google Scholar 

  4. Soccol, C.R., Vandenberghe, L.P.S.: Overview of applied solid-state fermentation in Brazil. Biochem. Eng. J. (2003). doi:10.1016/S1369-703X(02)00133-X

    Google Scholar 

  5. Waghmare, P.R., Kadam, A.A., Saratale, G.D., Govindwar, S.P.: Enzymatic hydrolysis and characterization of waste lignocellulosic biomass produced after dye bioremediation under solid state fermentation. Biores. Technol. (2014). doi:10.1016/j.biortech.2014.02.099

    Google Scholar 

  6. Baccouche, A., Ennouri, M., Felfoul, I., Attia, H.: A physical stability study of whey-based prickly pear beverages. Food Hydrocol. (2013). doi:10.1016/j.foodhyd.2013.03.007

    Google Scholar 

  7. Medina-Torres, L., La Fuente, E.B.S., Torrestiana-Sanchez, B., Katthain, R.: Rheological properties of the mucilage gum (Opuntia ficus indica). Food Hydrocolloyds (2000). doi:10.1016/S0268-005X(00)00015-1

    Google Scholar 

  8. Barka, N., Abdennouri, M., Makhfouk, M.E., Qourzal, S.: Biosorption characteristics of cadmium and lead onto eco-friendly dried cactus (Opuntia ficus indica) cladodes. J. Environ. Chem. Eng. (2013). doi:10.1016/j.jece.2013.04.008

    Google Scholar 

  9. Maran, J.P., Manikandan, S.: Response surface modeling and optimization of process parameters for aqueous extraction of pigments from prickly pear (Opuntia ficus-indica) fruit. Dyes Pigments (2012). doi:10.1016/j.dyepig.2012.06.007

    Google Scholar 

  10. Miller, S.M., Fugate, E.J., Craver, V.O., Smith, J.A., Zimmerman, J.B.: Toward understanding the efficacy and mechanism of Opuntia spp. as a natural coagulant for potential application in water treatment. Environ. Sci. Technol. (2008). doi:10.1021/es7025054

    Google Scholar 

  11. Hassini, L., Bettaieba, E., Desmorieux, H., Torres, S.S., Touil, A.: Desorption isotherms and thermodynamic properties of prickly pear seeds. Ind. Crop. Prod. (2015). doi:10.1016/j.indcrop.2015.01.078

    Google Scholar 

  12. de Castro, J.P., Araújo, E.R., do Rêgo, M.M., do Rêgo, E.R.: In vitro germination and disinfestation of sweet cactus (Nopalea cochenillifera (L.) Salm Dyck). Acta Scient. Agron. (2011). doi:10.4025/actasciagron.v33i3.6275

    Google Scholar 

  13. Dubeux, J.C.B. Jr., dos Santos, M.V.F., Lira, M.A., Santos, D.C., Farias, I., Lima, L.E., Ferreira, R.L.C.: Productivity of Opuntia ficus-indica (L.) Miller under different N and P fertilization and plant population in north-east Brazil. J. Arid. Environ. (2006). doi:10.1016/j.jaridenv.2006.02.015

    Google Scholar 

  14. da Silva, M.G.S., Dubeux, J.C.B. Jr., Assis, L.C.S.L.C., Mota, D.L., da Silva, L.L.S., dos Santos, M.V.F., dos Santos, D.C.: Anatomy of different forage cactus with contrasting insect resistance. J. Arid Environ. (2010). doi:10.1016/j.jaridenv.2009.11.003

    Google Scholar 

  15. Vasconcelos, A.G.V., Lira, M.A., Cavalcanti, V.A.L., Santos, M.V.F., Câmara, T., Willadino, L.: Micropropagação e palma forrageira cv. Miúda (Nopalea cochenillifera - Salm Dyck). Rev. Bras. Cien. Agrar. 2, 28–31 (2007)

    Google Scholar 

  16. Santos, T.C., Reis, N.S., Silva, T.P., Machado, F.P.P., Bonomo, R.C.F., Franco, M.: Prickly palm cactus husk as a raw material for production of ligninolytic enzymes by Aspergills niger. Food Sci. Biotechnol. (2016). doi:10.1007/s10068-016-0

    Google Scholar 

  17. Santos, T.C., Diniz, G.A., de Brito, A.R., Pires, A.J.V., Franco, M.: Effect of solid state fermentation on nutritional content and evaluation of degradability in cactus pear. Rev. Caatinga. (2015). doi:10.1590/1983-21252015v28n328rc

    Article  Google Scholar 

  18. Santos, T.C., Cavalcanti, I.S., Bonomo, R.C.F., Santana, N.B., Franco, M.: Optimization of productions of cellulolytic enzymes by Aspergillus niger using residue of mango a substrate. Ciên. Rur. (2011). doi:10.1590/S0103-84782011005000145

    Google Scholar 

  19. Azevedo, A.M., Rosa, P.A.J., Ferreira, I.F., Aires-Barros, M.R.: Optimisation of aqueous two-phase extraction of human antibodies. J. Biotechnol. (2007). doi:10.1016/j.jbiotec.2007.04.002

    Google Scholar 

  20. Rodrigues, M.I., Iemma, A.F.: Experimental design and process optimization. CRC Press, Boca Raton (2014)

    Google Scholar 

  21. Bailey, M.J., Biely, P., Poutanen, K.: Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. (1992). doi:10.1016/0168-1656(92)90074-J

    Google Scholar 

  22. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. (1959). doi:10.1021/ac60147a030

    Google Scholar 

  23. Gokhale, D.U., Puntambekar, U.S., Deobagkar, D.N.: Xylanase and betaxylosidase production by Aspergillus niger NCIM 1207. Biotechnol. Lett. (1986). doi:10.1007/BF01048472

    Google Scholar 

  24. dos Santos, T.C., Gomes D.P.P., Bonomo R.C.F., Franco, M.: Optimisation of solid state fermentation of potato peel for the production of cellulolytic enzymes. Food Chem. (2012). doi:10.1016/j.foodchem.2011.11.115

    Google Scholar 

  25. Handa, C.L., Couto, U.R., Vicensoti, A.H., Georgetti, S.R., Ida, E.I.: Optimisation of soy flour fermentation parameters to produce b-glucosidase for bioconversion into aglycones. Food Chem. (2014). doi:10.1016/j.foodchem.2013.11.101

    Google Scholar 

  26. Matsuura, M., Sasaki, J., Murao, S.: Studies on b-glucosidases from soybeans that hydrolyse daidzin and genistin: Isolation and characterization of an isozyme. Biosci. Biotechnol. Biochem. (1995).doi:10.1271/bbb.59.1623

    Google Scholar 

  27. Alva, S., Anupama, J., Savla, J., Chiu, Y.Y., Vyshali, P., Shruti, M.: Production and characterization of fungal amylase enzyme isolated from Aspergillus sp. JGI 12 in solid state culture. Afr. J. Biotechnol. 6, 576–581 (2007)

    Google Scholar 

  28. Biazus, J.P.M., Souza, R.R., Santana, J.C.C., Tambourgi, E.B.: Otimização da secagem do malte de Zea mays. Cien Tecnol. Alim. (2006). doi:10.1590/S0101-20612006000400012

    Google Scholar 

  29. Omemu, A.M., Akpan, I., Bankole, M.O., Teniola, O.D.: Hydrolysis of raw tuber starches by amylase of Aspergillus niger AM07 isolated from the soil. Afr. J. Biotechnol. 4, 19–25 (2005)

    Google Scholar 

  30. dos Santos, T.C., Filho, G.A., Oliveira, A.C.O., Rocha, T.J.O., Machado, F.P.P., Bonomo, R.C.F., Mota, K.I.A., Franco, M.: Application of response surface methodology for producing cellulolytic enzymes by solid-state fermentation from the puple mombin (Spondias purpurea L.) residue. Food Sci. Biotechnol. (2013). doi:10.1007/s10068-013-0001-4

    Google Scholar 

  31. Shafique, S., Bajwa, R., Shafique, S.: Screening of Aspergillus niger and A. flavus strains for extra cellular alpha-amylase activity. Pak J. Bot. 41, 897–905 (2009)

    Google Scholar 

  32. Abdeshahian, P., Samat, N., Hamid, A.A., Yusoff, W.M.W.: Solid substrate fermentation for cellulase production using palm kernel cake as a renewable lignocellulosic source in packed-bed bioreactor. Biotechnol Biopr. Eng. (2011). doi:10.1007/s12257-010-0320-8

    Google Scholar 

  33. Zimbardi, A.L.R.L., Sehn, C., Meleiro, L.P., Souza, F.H.M., Masui, D.C., Nozawa, M.S.F., Guimarães, L.H.S., Jorge, J.A.J., Furriel, R.P.M. Optimization of β-glucosidase, β-xylosidase and xylanase production by Colletotrichum graminicola under solid-state fermentation and application in raw sugarcane trash saccharification. Int J Mol. Sci. (2013). doi:10.3390/ijms14022875

    Google Scholar 

  34. Saha, S.P., Ghosh, S.: Optimization of xylanase production by Penicillium citrinum xym2 and application in saccharification of agro-residues. Biocatal. Agricult. Biotechnol. (2014). doi:10.1016/j.bcab.2014.03.003

    Google Scholar 

  35. Kaushik, P., Mishra, A., Malik, A.: Dual application of agricultural residues for xylanase production and dye removal through solid state fermentation. Int. Biodeter. Biodegrd. (2014). doi:10.1016/j.ibiod.2014.08.006

    Google Scholar 

  36. Alves-Prado, H.F., Pavezzi, F.C., Leite RSR, de Oliveira, V.M., Sette, L.D., da Silva, R.: Screening and production study of microbial xylanase producers from brazilian cerrado. Appl. Biochem. Biotechnol. (2010). doi:10.1007/s12010-009-8823-5

    Google Scholar 

  37. Garcia, N.F.L., Santos, F.R.S., Gonçalves, F.A., da Paz, M.F., Fonseca, G.G., Leite, R.S.R.: Production ofβ -glucosidase on solid-state fermentation byLichtheimia ramosain agroindustrial residues: characterization and catalytic properties of the enzymatic extract. Electr. J. Biotechnol. (2015). doi:10.1016/j.ejbt.2015.05.007

    Google Scholar 

  38. Sharma, R., Rawat, R., Bhogal, R.S., Oberoi, H.S.: Multi-component thermostable cellulolytic enzyme production byAspergillus nigerHN-1 using pea pod waste: appraisal of hydrolytic potential with lignocellulosic biomass. Process Biochem. (2015). doi:10.1016/j.procbio.2015.01.025

    Google Scholar 

  39. Scholl, A.l., Menegol, D., Pitarelo, A.P., Fontana, R.C., Zandoná Filho, A., Ramos, L.P., Dillon, A.J.P., Camassola, M.: Elephant grass (Pennisetum purpureum Schum.) pretreated via steam explosion as a carbon source for cellulases and xylanases in submerged cultivation. Ind. Crops Prod. (2015). doi:10.1016/j.indcrop.2015.03.056

    Google Scholar 

  40. Shah, A.R., Madamwar, D.: Xylanase production by a newly isolated Aspergillus foetidus strain and its characterization. Process Biochem. (2005). doi:10.1016/j.procbio.2004.06.041

    Google Scholar 

  41. Bai, H., Wang, H., Sun, J., Irfan, M., Han, M., Huang, Y., Han, X., Yang, Q.: Production, purification and characterization of novel beta glucosidase from newly isolated Penicilium simplicissimum H-11 in submerged fermentation. EXCLI. J. (2013). doi:10.17877/DE290R-7346

    Google Scholar 

  42. Gao, L., Gao, F., Jiang, X., Zhang, C., Zhang, D., Wang, L., Wu, G., Chen, S.: Biochemical characterization of a new β-glucosidase (Cel3E) from Penicillium piceum and its application in boosting lignocelluloses bioconversion and forming disaccharide inducers: New insights into the role of β-glucosidase. Process Biochem. (2014). doi:10.1016/j.procbio.2014.02.012

    Google Scholar 

  43. Langston, J., Sheehy, N., Xu, F.: Substrate specificity of Aspergillus oryzae family 3 β-glucosidase. Biochim Biophys Acta. (2006). doi:10.1016/j.bbapap.2006.03.009

    Google Scholar 

  44. Tiwari, P., Misra, B.N., Sangwan, N.S.: β-Glucosidases from the fungus trichoderma: an efficient cellulase machinery in biotechnological applications. BioMed Res. Int. (2013). doi:10.1155/2013/203735

    Google Scholar 

  45. Riou, C., Salmon, J.M., Vallier, M.J., Günata, Z., Barre, P.: Purification, characterization, and substrate specificity of a novel highly glucose-tolerant beta-glucosidase from Aspergillus oryzae. Appl. Environ. Microbiol. 64, 3607–3614 (1998)

    Google Scholar 

  46. Jäger, S., Brumbauer, A., Fehér, E., Réczey, K., Kiss, L.: Production and characterization of β-glucosidases from diferent Aspergillus strains. World J. Microb. Biotechnol. (2001). doi:10.1023/A:1011948405581

    Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the Banco do Nordeste do Brasil (BNB, Brazil), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil), the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for their important financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Franco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, T.C., dos Santos Reis, N., Silva, T.P. et al. Production, Optimisation and Partial Characterisation of Enzymes from Filamentous Fungi Using Dried Forage Cactus Pear as Substrate. Waste Biomass Valor 9, 571–579 (2018). https://doi.org/10.1007/s12649-016-9810-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9810-z

Keywords

Navigation