Log in

Study of rip cosmological models in f(TB) gravity

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The rip cosmological models of the universe have been presented in this paper in f(TB) gravity, where T and B respectively denote the torsion scalar and boundary term. Three models pertaining to Little Rip, Big Rip, and Pseudo Rip are shown, and their geometrical and dynamical parameters are analyzed. The violation of strong energy conditions in each case has also been shown. The behaviour of the equation of state parameter in the case of the Little Rip model and the Pseudo Rip model shows phantom-type behaviour but remains very close to the \(\Lambda \)CDM line. In all these accelerating models, the avoidance of singularity scenarios has been observed. The geometrical parameters for all the rip models have been investigated in each category. It has been observed that this study is in alignment with the current observational data studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S Perlmutter et al Astrophys. J. 517 565 (1999)

    Article  Google Scholar 

  2. A G Riess et al Astron. J. 116 1009 (1998)

    Article  Google Scholar 

  3. R R Caldwell, M Kamionkowski and N N Weinberg Phys. Rev. Lett. 91 071301 (2003)

    Article  Google Scholar 

  4. P H Frampton and T Takahashi Phys. Lett. B 557 135 (2003)

    Article  Google Scholar 

  5. S H Chen et al Phys. Rev. D 83 023508 (2011)

    Article  Google Scholar 

  6. R Myrzakulov Eur. Phys. J. C 71 1752 (2011)

    Article  Google Scholar 

  7. K Karami and A Abdolmaleki J. Cosmo. Astropar. Phys. 2012 007 (2012)

    Article  Google Scholar 

  8. G Farrugia and J L Said Phys. Rev. D 94 124054 (2016)

    Article  MathSciNet  Google Scholar 

  9. M Zubair Int. J. Mod. Phys. D 25 1650057 (2016)

    Article  Google Scholar 

  10. L K Duchaniya, S V Lohakare, B Mishra and S K Tripathy Eur. Phys. J. C 82 448 (2022)

    Article  Google Scholar 

  11. J L Said Eur. Phys. J. C 77 883 (2017)

    Article  Google Scholar 

  12. S A Kadam, S V Lohakare and B Mishra Annal. Phys. 460 169563 (2024)

  13. S A Kadam, N P Thakkar and B Mishra Eur. Phys. J. C 83 809 (2023)

  14. S V Lohakare, K Rathore and B Mishra Class. Quant. Grav. 40 215009 (2023)

  15. S Bahamonde et al Rep. Prog. Phys. 86 207 (2023)

    Article  MathSciNet  Google Scholar 

  16. S Bahamonde and M Wright Phys. Rev. D 92 109901 (2015)

    Article  Google Scholar 

  17. M G Espinoza and G Otalora Eur. Phys. J. C 81 480 (2021)

    Article  Google Scholar 

  18. L K Duchaniya, S A Kadam, J L Said and B Mishra Eur. Phys. J. C 83 27 (2023)

    Article  Google Scholar 

  19. L K Duchaniya, J L Said and B Mishra Eur. Phys. J. C 83 613 (2023)

    Article  Google Scholar 

  20. S Bahamonde, K F Dialektopoulos and J Levi Said Phys. Rev. D 100 064018 (2019)

    Article  MathSciNet  Google Scholar 

  21. S A Kadam, B Mishra, and J L Said Eur. Phys. J. C 82 680 (2022)

  22. T Harko et al JCAP 2014 021 (2014)

    Article  Google Scholar 

  23. G Farrugia, J L Said and A Finch Universe 6 2 (2020)

    Article  Google Scholar 

  24. C E Rivera and J L Said Class. Quan. Grav. 37 165002 (2020)

    Article  Google Scholar 

  25. S Bahamonde et al Rep. Prog. Phys. 86 026901 (2023)

    Article  MathSciNet  Google Scholar 

  26. S Bahamonde and S Capozziello Eur. Phys. J. C 77 107 (2017)

    Article  Google Scholar 

  27. G A R Franco, C E Rivera and J L Said Eur. Phys. J. C 80 677 (2020)

    Article  Google Scholar 

  28. S A Kadam, J L Said and B Mishra Int. J. Geo. Meth. Mod. Phys. 20 2350083 (2022)

    Article  Google Scholar 

  29. S A Kadam, B Mishra and S K Tripathy Mod. Phys. Let. A 37 2250104 (2022)

    Article  Google Scholar 

  30. S Bahamonde, M Zubair and G Abbas Phys. Dark Uni. 19 78 (2018)

    Article  Google Scholar 

  31. M Caruana, G Farrugia and J L Said Eur. Phys. J. C 80 640 (2020)

    Article  Google Scholar 

  32. L Pati, S A Kadam, S K Tripathy and B Mishra Phys. Dark Univ. 35 100925 (2022)

  33. S V Lohakare, F Tello-Ortiz, B Mishra and S K Tripathy Grav. Cosmo. 29 443 (2023)

    Article  Google Scholar 

  34. P P Ray, S Tarai, B Mishra and S K Tripathy For. Der. Phys. 69 2100086 (2021)

    Google Scholar 

  35. S V Lohakare, B Mishra, S K Maurya and Ksh N Singh Phys. Dark Univ. 39 101164 (2023)

    Article  Google Scholar 

  36. S A Kadam, B Mishra and J L Said Phys. Scr. 98 045017 (2023)

    Article  Google Scholar 

  37. Y Zhang et al J. Cosmo. Astropar. Phys. 2011 015 (2011)

    Article  Google Scholar 

  38. B Mirza and F Oboudiat J. Cosmo. Astropar. Phys. 11 011 (2017)

    Article  Google Scholar 

  39. M Koussour, S H Shekh and M Bennai Phys. Dark Univ. 36 101051 (2022)

    Article  Google Scholar 

  40. M Koussour et al Annal. Phys. 445 169092 (2022)

    Article  MathSciNet  Google Scholar 

  41. M Koussour, S H Shekh, M Govender and M Bennai J. High Ener. Astrophys. 37 15 (2023)

    Article  Google Scholar 

  42. M Koussour and M Bennai Chin. J. Phys. 79 339 (2022)

    Article  Google Scholar 

  43. R Amanullah et al Astrophys. J. 716 712 (2010)

    Article  Google Scholar 

  44. E D Valentino, A Melchiorri and J Silk Phys. Lett. B 761 242 (2016)

    Article  Google Scholar 

  45. K Bamba, R Myrzakulov, S Nojiri and S D Odintsov Phys. Rev. D 85 104036 (2012)

    Article  Google Scholar 

  46. P K Sahoo, P Sahoo, B K Bishi and S Aygun Mod. Phys. Let. A 32 1750105 (2017)

    Article  Google Scholar 

  47. A S Agrawal, B Mishra and S K Tripathy J. High Energ. Astrophy. 38 41 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Dasunaidu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, V.S., Ganesh, V. & Dasunaidu, K. Study of rip cosmological models in f(TB) gravity. Indian J Phys 98, 3381–3392 (2024). https://doi.org/10.1007/s12648-024-03089-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-024-03089-4

Keywords

Navigation