Log in

Structural, cation distribution, magnetic and electrical properties of Co0.5Zn0.5−xNdxFe2O4 nano-ferrite

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Rare earth ion Nd+3 doped Co0.5Zn0.5−xNdxFe2O4 (x = 0.00 to 0.05) (CZNFO) nano-sized ferrite have been successfully constructed by self-ignited sol–gel method using citric acid (C6H8O7) as a chelating agent. The structural and morphology were satisfied by XRD patterns and FE-SEM microscopy, respectively. XRD spectra witnessed single phase without additional peaks, other than spinel type structure i.e., cubic structure with space group Fd-3 m as reported in JCPDS card No 22–1086. Rietvield refinement operation is done for gaining, lattice parameters, unit-cell volume and bond length. The evaluated crystallite sizes for CZNFO are 5–13 nm from Debye Scherrer equation, and additionally microstrain and dislocation density are estimated for pure and dopants. The inspection of cation distribution was done by the help of cation occupancy data. The morphology of grain is filament shaped and densely agglomerated with reducing of their grain size from 99.5 to 28 nm for each do** level, the reduced size impacts on the alteration of magnetic and electric properties. Extent to this, Fe–O bond and presence of tetrahedral (416 cm−1) and octahedral (570 cm−1) complexes were supported by FT-IR spectra, vibrating sample magnetometer executes a ferrimagnetic nature and downscale in the magnetic saturation as addition of Nd+3. Further, an applied frequency responses of dielectric constant and tan (δ) are significantly denote in higher frequency and firmly agree with Koop’s and Maxwell Wagner theory of polarization. The non-Debye type of relaxation process is executed by impedance spectra study. Further the Cole–Cole fitted plot describes an approval of contribution of grain boundaries over grains with notable of semi-circle nature for each level of Nd dopant. Finally frequency dependent relative permeability at room temperature shows the decay in all do** composition and supports the good in electrical properties for rare earth ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y Luo, G Tan, G Dong and H Ren J. Mater. Sci. 26 6240 (2015)

    Google Scholar 

  2. R Talebi J. Mater. Sci. 28 3774 (2017)

    MathSciNet  Google Scholar 

  3. W W Lukens, N Magnani, T Tyliszczak, C I Pearce and D K Shuh Environ. Sci. Technol. 50 13160 (2016)

    ADS  Google Scholar 

  4. M A Golsefidi, M Abrodi, Z Abbasi, A Dashtbozorg and M E Rostami J. Mater. Sci. 27 8654 (2016)

    Google Scholar 

  5. S Liu, D Zhang and G Piao Chin J. Liq. Cryst Disp. 30 229 (2015)

    Google Scholar 

  6. D Zhao, S Deng, J Kang, Q Wang, L Xu, L Guo and H Yang Chin. J. Liq. Cryst. Disp. 30 208 (2015)

    ADS  Google Scholar 

  7. Y Sun and Q Li Chin. J. Liq. Cryst. Disp. 31 635 (2016)

    Google Scholar 

  8. D Qu, M Zheng, J Li, Z **e and Z Sci Appl. 4 364 (2015)

    Google Scholar 

  9. J Liu, Y Li, Y Hou, Y Wang and L Lv Chin J. Liq. Crys Disp. 31 643 (2016)

    Google Scholar 

  10. K Niu, L Liang, F Peng, F Zhang and Y Gu ACS Appl. Mater. Interfaces. 8 24682 (2016)

    Google Scholar 

  11. Y Chen, G Tian, W Zhou, Y **ao, J Wang, X Zhang and H Fu Nanoscale. 9 5912 (2017)

    Google Scholar 

  12. K Hedayati, S Azarakhsh and J Saffari J. Mater. Sci. 27 8758 (2016)

    Google Scholar 

  13. J A Gomes, G M Azevedo, J Depeyrot, J Mestnik-Filho, F L O Paula and F A Tourinho J. Phys. Chem. C 116 24281 (2012)

    Google Scholar 

  14. S Nadir, E Osman, N Thapliyal, W S Alwan and R Karpoormath J. Mater. Sci. 26 5097 (2015)

    Google Scholar 

  15. G Ma, Y Chen, L Li, D Jiang and R Qiao Mater. Lett. 131 38 (2014)

    Google Scholar 

  16. M H Habibi and V Mosavi J. Mater. Sci. 28 8473 (2017)

    Google Scholar 

  17. D S Nikam, S V Jadhav, V M Khot, R A Bohara, C K Hong, S S Mali and S H Pawar RSC Adv. 5 2338 (2015)

    ADS  Google Scholar 

  18. V Blanco-Gutiérrez, M J Torralvo and R Sáez-Puche J. Phys. 200 072013 (2010)

    Google Scholar 

  19. C Yao, Q Zeng, G F Goya, T Torres, J Liu, H Wu, M Ge, Y Zeng, Y Wang and J Z Jiang J. Phys. Chem. C 111 12274 (2007)

    Google Scholar 

  20. D Wang, Q Chen, G **ng, J Yi, B S Rahman, J Ding, J Wang and T Wu Nano Lett. 12 3994 (2012)

    ADS  Google Scholar 

  21. J Limpert, F Stutzki, F Jansen, H-J Otto, T Eidam, C Jauregui and A Tunnermann Light Sci. Appl. 1 8 (2012)

    Google Scholar 

  22. P Wang, Y Wang and L Tong Light Sci. Appl. 2 102 (2013)

    Google Scholar 

  23. G Z **ng, J B Yi, F Yan and T Wu Appl. Phys. Lett. 104 202411 (2014)

    ADS  Google Scholar 

  24. S V Sergeyev, C Mou, E G Turitsyna, A Rozhin, S K Turitsyn and K Blow Light Sci. Appl. 3 131 (2014)

    Google Scholar 

  25. T Grossmann, T Wienhold, U Bog, T Beck, C Friedmann, H Kalt and T Mappes Light Sci. Appl. 2 82 (2013)

    Google Scholar 

  26. E Mehran and S F Shayesteh J. Supercond. Nov. Magn. 29 1241 (2016)

    Google Scholar 

  27. S Kuai and Z Zhang J. Hazard. Mater. 229 250 (2013)

    Google Scholar 

  28. S Joshi, M Kumar, H Pandey, M Singh and P Pal J. Alloys Compd. 768 287 (2018)

    Google Scholar 

  29. L Chauhan, N Singh, A Dhar, H Kumar and S Kumar Ceram. Int. 43 8378 (2017)

    Google Scholar 

  30. S M Masoudpanah, S A S Ebrahimi, M Derakhshani and S M Mirkazemi J. Magn. Magn. Mater. 370 122 (2014)

    ADS  Google Scholar 

  31. M A Almessiere and Y Slimani Ultrason. Sonochem. 58 104621 (2019)

    Google Scholar 

  32. R S Yadav, J Havlica, J Masilko, L Kalina, J Wasserbauer, M Hajdúchová, V Enev, I Kuřitka and Z Kožáková J. Magn. Magn. Mater. 399 109 (2016)

    ADS  Google Scholar 

  33. X Zhou, J Wang and D Yao J. Alloys Compd. 935 167777 (2023)

    Google Scholar 

  34. X Qiu Chem. Eng. J. 405 126994 (2021)

    Google Scholar 

  35. R S Yadav J. Magn. Magn. Mater. 399 109 (2016)

    ADS  Google Scholar 

  36. C R Stein AIP Adv. 8 056303 (2018)

    ADS  Google Scholar 

  37. L Zhao J. Solid State Chem. 181 245 (2008)

    ADS  Google Scholar 

  38. G Kumar, R Rani, S Sharma and K M Batoo Ceram. Int. 39 4813 (2013)

    Google Scholar 

  39. A Mazrouei Chem. Phys. 209 152 (2018)

    Google Scholar 

  40. B K Ostafiychuk, L S Kaykan and J S Kaykan Nanoscale Res. Lett. 12 237 (2017)

    ADS  Google Scholar 

  41. S Matteppanavar and B G Hegde J. Alloys Compd. 954 170031 (2023)

    Google Scholar 

  42. M Sedlacik Dalton. Trans. 43 6919 (2014)

    Google Scholar 

  43. B G Toksha J. Phys. Chem. C 115 20905 (2011)

    Google Scholar 

  44. C Murugesan RSC Adv. 5 73714 (2015)

    ADS  Google Scholar 

  45. F Ahmed Cryst. Eng. Comm. 14 4016 (2012)

    Google Scholar 

  46. L We J. Am. Ceram. Soc. 95 3922 (2012)

    Google Scholar 

  47. Y M Abbas, S A Mansour, M H Ibrahim and S E Ali J. Magn. Magn. Mater. 323 2748 (2011)

    ADS  Google Scholar 

  48. R M Mohamed J. Magn. Magn. Mater. 322 2058 (2010)

    ADS  Google Scholar 

  49. H Kumar, J P Singh, R C Srivastava, P Negi, H M Agrawal and K Asokan J. Nanosci. 1 (2014). https://doi.org/10.1155/2014/862415

  50. M A Ahmed, E Aeia and F M Salem Phys. B. 381 1–2 144 (2006)

    ADS  Google Scholar 

  51. S K Gore, S S Jadhav and V V Jadhav Sci. Rep. 7 2524 (2017)

    ADS  Google Scholar 

  52. Y Yafet C Phys. Rev. 2 87 (1952)

    Google Scholar 

  53. A Majeed J. Magn. Magn. Mat. 408 147 (2016)

    ADS  Google Scholar 

  54. A Franco Jr and F Silva C J. Appl. Phys. 113 513 (2013)

    Google Scholar 

  55. X Cao, H Dong, Y Tan and J Meng J. Electron. Mater. 47 2920 (2018)

    ADS  Google Scholar 

  56. F Sharifinajaz Ceram. Int. 46 18391 (2020)

    Google Scholar 

  57. U R Ghodake Ceram. Int. 43 1129 (2017)

    Google Scholar 

  58. S G Kakade, Y R Ma, R S Devan, Y D Kolekar and C V Ramana J. Phys. Chem. C. 120 5682 (2016)

    Google Scholar 

  59. A A Ansari J. Mater. Sci. Mater. Electron. 1 21988 (2021)

    Google Scholar 

  60. R Sengwa J J. Alloys Compd. 701 652 (2017)

    Google Scholar 

  61. J C Maxwell A Treatise on Electricity and Magnetism. (London: Oxford University Press) by William Davidson Niven (1873)

  62. C G Koops Phys. Rev. 83 121 (1951)

    ADS  Google Scholar 

  63. K W Wagner Ann. Phys. 40 817 (1973)

    Google Scholar 

  64. A M Shaikh J. Magn. Magn. Mat. 195 384 (1999)

    ADS  Google Scholar 

  65. A Majeed Phys. B 38 503 (2016)

    Google Scholar 

  66. M George, S S Nair, A M John, P A Joy and M R Anantharamam J. Phys. D Appl. Phys. 39 900 (2006)

    ADS  Google Scholar 

  67. B Parvatheeawara Rao and K H Rao J. Mater. Sci. 32 6049 (1997)

    Google Scholar 

  68. M A Rahman and A K M A Hossain Phys. Scr. 89 025803 (2014)

    ADS  Google Scholar 

  69. K Kumari, K Prasad and R N P Choudhary J. Alloys Compd. 453 325 (2008)

    Google Scholar 

  70. R V Mangalaraja, S Ananthakumar, P Manohar and F D Gnanam J. Magn. Magn. Mater. 253 56 (2002)

    ADS  Google Scholar 

  71. V J Angadi J. Magn. Magn. Mater. 424 1 (2017)

    ADS  Google Scholar 

  72. M F Mahmood and M B Hossen Int. Nano Lett. 12 179 (2022)

    Google Scholar 

  73. B Hamed and C K Ong Ceram. Int. 43 4780–4784 (2016)

    Google Scholar 

Download references

Acknowledgements

BGH and SM acknowledge the financial support from the VGST Govt. of Karnataka (GRD 389 and GRD 852) for the financial support to set up of the contactless susceptibility measurement system and Vibrating Sample Magnetometer (VSM). In addition, SM thanks the Vision Group on Science and Technology for sanctioning the project under the "Center of Excellence in Science, Engineering and Medicine” (CESEM GRD No 852) Government of Karnataka. Hanamanta and SM thank UGC DAE CSR Mumbai center for sanctioning the project CRS/2021-22/03/587 Dated: 30/03/2022.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shidaling Matteppanavar or B. G. Hegde.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badiger, H., Matteppanavar, S., Pratheek et al. Structural, cation distribution, magnetic and electrical properties of Co0.5Zn0.5−xNdxFe2O4 nano-ferrite. Indian J Phys 98, 2363–2374 (2024). https://doi.org/10.1007/s12648-023-03007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-03007-0

Keywords

Navigation