Log in

Electronic, elastic, and thermodynamic properties of Cd0.75TM0.25S (TM = Os or Ir) alloys with the TB-mBJ approach and hybrid density functional (HSE06)

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The electronic structure, elastic moduli, as well as thermodynamic features of the ferromagnetic Cd0.75TM0.25S (TM = Os or Ir) compounds in the zinc-blende phase were investigated by employing the “generalized gradient approximations” parametrized by Wu and Cohen combined with the “modified Becke-Johnson (TB-mBJ)” as well as the hybrid functional (HSE06). The predicted total magnetic moments for the transition metals Os and Ir are 4.0 μB and 3.0 μB with TB-mBJ and are 2.0 μB and 3.0 μB using the hybrid functional (HSE06) for compounds Cd0.75Os0.25S and Cd0.75Ir0.25S, respectively. The generation of magnetic moments and spin-polarization in these alloys is directly linked to the contribution coming from TM-5d states. The ferromagnetic properties of these alloys were predicted by the computed exchange constants Besides, the increase in the porosity paramete\(N_{0\alpha }\) and \(N_{0\beta }\). The Total and partial densities of states (TDOS/PDOS) and the behavior of electronic band structures (EBS) were also calculated to describe the ferromagnetic semiconducting and half-metallic (HM) characteristics with TB-mBJ and the hybrid functional (HSE06). According to the findings, Cd0.75Os0.25S is a half-metallic ferromagnetic (HM) material with a full polarization spin distribution of electrons at the Fermi energy level, exhibiting metallicity for the majority spin and a semiconducting nature for the minority spin. In contrast, Cd0.75Ir0.25S is a ferromagnetic half-semiconductor (HSC) with two distinct gaps depending on the up and down spin configurations. Calculations of the elastic constants, Young and shear moduli reveal that the compound Cd0.75TM0.25S (TM = Os or Ir) is mechanically stable, has a high degree of anisotropy, and is naturally ductile. Furthermore, the “quasi-harmonic Debye model” was performed to examine the thermodynamic properties of the studied compounds, including the thermal capacity, entropy and Debye temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T Jungwirth, J Sinova, J Masek, J Kucera and A H MacDonald Mod. Phys. 78 809 (2006)

    CAS  Google Scholar 

  2. F Matsukara , H Ohno and T Dietl Handbook of Magnetic Materials, (Elsevier, Amsterdam) K Bushow Vol. 14 1 (2002)

  3. R A de Groot, F M Mueller, P D Van Engen and K H J Buschow Rev. lett. 50 2024 (1983)

    Google Scholar 

  4. C Wei Wu and D **n Yao J. Magn. Magn. Mater. 4931 165727 (2020)

    Google Scholar 

  5. H Miyagawa et al. J. Magn. Magn. Mater. 47615 213 (2019)

    Google Scholar 

  6. C B S Valentin, R L de Sousa e Silva and A Franco Mater. Sci. Semicond. Process. 96 122 (2019)

    Google Scholar 

  7. S Arif, B Amin, I Ahmad, M Maqbool, R Ahmad, M Haneefand and N Ikram Appl. Phys. 12 184 (2012)

    Google Scholar 

  8. R Kevin, K William and R Daniel Nat. Mater. 5 291 (2006)

    Google Scholar 

  9. S Gupta, W E Fenwick, A Melton, T Zaidi, H Yu and V Rengarajan J Cryst. Growth 310 503 (2008)

    Google Scholar 

  10. Y Li, C Chuanbao and Z Chen Chem. Phys. Lett. 517 55 (2011)

    CAS  Google Scholar 

  11. S Sambasivam, B C Choi and J G Lin J. Solid State Chem. 184 199 (2011)

    CAS  Google Scholar 

  12. K Bapna, R J Choudhary, S K Pandey, D M Phase, S K Sharma and M Knobel Appl. Phys. Lett. 99 112502 (2011)

    Google Scholar 

  13. H Pan, J B Yi, L Shen, R Q Wu, J H Yang, J Y Lin, Y P Feng, J Ding, L H Van and J H Yin Rev. Lett. 99 127201 (2007)

    CAS  Google Scholar 

  14. M Boudjelal, A Belfedal, B Bouadjemi, T Lantri, R Bentata, M Batouche and R Khenata Chin J. Phys. 61 155 (2019)

    Google Scholar 

  15. C W Zhang, S S Yan, P J Wang and Z Zhang Phys. Lett. 46 496 (2010)

    Google Scholar 

  16. V Ladizhansky, V Lyahovitskaya and S Vega Phys. Rev. B 60 8097 (1999)

    CAS  Google Scholar 

  17. B Srinivasa Rao, V R Rajagopal, B R Kumar and T Subba Rao Int. J. Nanosci. 11 1240006 (2012)

    Google Scholar 

  18. T Dietl, H Ohno and F Matsukura Phys. Rev. B 63 195205 (2001)

    Google Scholar 

  19. K Sato and H Katayama-Yoshida Semicond. Sci. Technol. 17 367 (2002)

    CAS  Google Scholar 

  20. S Nazir, N Ikram, M Tanveer and A Shaukat J. Phys. Chem. 113 6022 (2009)

    CAS  Google Scholar 

  21. H Moulkhalwa, Y Zaoui, K O Obodo, A Belkadi, L Beldi and B Bouhafs J. Supercond. Nov. Magn. 32 635 (2019)

    CAS  Google Scholar 

  22. M Boudjelal, R Bentata, B Bouadjemi, A Belfedal, T Seddik, T Lantri, M Batouche, S Bentata and R Khenata Indian J. Phys. 12648 02078 (2021)

    Google Scholar 

  23. Ch Bourouis and A Meddour J. Magn. Magn. Mater. 324 1040 (2012)

    CAS  Google Scholar 

  24. W Benstaali, S Bentata and H Bentounes Sci. Semicond. Process. 17 53 (2014)

    CAS  Google Scholar 

  25. F Aorag and H Cartier Mater. Chem. Phys. 66 10 (2000)

    Google Scholar 

  26. M H Gous, A Meddour and C Bourouis J. Magn. Magn. Mater. 422 271 (2017)

    CAS  Google Scholar 

  27. H Yahi and A Meddour J. Magn. Magn. Mater. 432 591 (2017)

    CAS  Google Scholar 

  28. S Zhou et al. Phys. Lett. 93 232507 (2008)

    Google Scholar 

  29. S Haid, W Benstaali, A Abbad, B Bouadjemi, S Bentata and Z Aziz Mater. Sci. 245 68 (2019)

    CAS  Google Scholar 

  30. "M Boudjelal et al. Opt. Quant. Elec. 54 716 (2022)

    CAS  Google Scholar 

  31. P Hohenberg and W Kohn Phys. Rev. 136 864 (1964)

    MathSciNet  Google Scholar 

  32. Z Wu and R E Cohen Phys. Rev. B 73 235116 (2006)

    Google Scholar 

  33. F Tran and P Blaha Phys. Rev. Lett. 102 226401 (2009)

    PubMed  Google Scholar 

  34. J Heyd, G E Scuseria and M Ernzerhof J. Chem. Phys. 118, 8207 (2003); 124, 219906(E) (2006)

  35. O Madelung, Numerical Data and Functional Relation-ships in Science and Technology, Landolt Borenstein, Springer, vol. 22, p. 117, Berlin (1982)

  36. G Z Shen, J H Cho, J K Yoo, G C Yi and C J Lee J. Phys. Chem. B 109 9294 (2005)

    CAS  PubMed  Google Scholar 

  37. N Kh Abrikosov, V B Bankina, L V Poretskaya, L E Shelimova and E V Skudnova, Semiconducting II–VI, IV–VI and V–VI Compounds ~Plenum, New York (1969)

  38. J Heyd J. Chem. Phys. 123 174101 (2005)

    PubMed  Google Scholar 

  39. M Z Huang and W Y Ching J. Phys. Chem. Solids 46 977 (1985)

    CAS  Google Scholar 

  40. H Moulkhalwa, Y Zaoui, K O Obodo and A Belkadi J. Supercond. Nov. Magn. 32 635 (2019)

    CAS  Google Scholar 

  41. K L Yao, G Y Gao, Z L Liu and L Zhu Solid State Commun. 133 301 (2005)

    CAS  Google Scholar 

  42. J R Christman Fundamentals of Solid-State Physics (New York: Wiley) (1988)

    Google Scholar 

  43. Z Hashin and S Shtrikman J. Mech. Phys. Solids 10 343 (1962)

    MathSciNet  CAS  Google Scholar 

  44. S A Khandy, I Islam, D C Gupta, R Khenata and A Laref Sci. Rep. 9 1 (2019)

    CAS  Google Scholar 

  45. M. Jamal Cubic–Elastic, http: //www .wien2kat/reguser /unsupported /cubic-elast (2012)

  46. L Huang, M C Fehler and C C Burch, Hybrid local Born/Rytov Fourier migration method, in Mathematical Methods in Geophysical Imaging 3453 14 (1998)

  47. I R Shein and A L Ivanovskii J. Phys. Condens. Matter 20 415218 (2008)

    Google Scholar 

  48. K Wright and J D Gale Phys. Rev. B 70 035211 (2004)

    Google Scholar 

  49. U Sarkar, B Debnath, M Debbarma, D Ghosh, S Chanda and R Bhattacharjee Comput. Condens. Matter 22 00448 (2020)

    Google Scholar 

  50. O Madelung, M Schulz, H Weiss and Landolt-Borstein Numerical Data and Functional Relationships in Science and Technology (Berlin: Springer) (1982)

    Google Scholar 

  51. S Khenchoul, A Guibadj, B Lagoun, A Chadli and S Maabed J. Supercond. Nov. Magn. 29 2225 (2016)

    CAS  Google Scholar 

  52. B B Karki, G J Ackl and J Crain J. Phys. Condens. Matter. 9 8579 (1997)

    CAS  Google Scholar 

  53. S Pugh and D Philos Mag. J. Sci. 45 823 (1954)

    CAS  Google Scholar 

  54. M Dao, N Chollacoop, K J van Vliet, T A Venkatesh and S Suresh Acta Mater. 49 3899 (2001)

    CAS  Google Scholar 

  55. N Frantsevich, F F Voronov and S A Bokuta Handbook (Kiev: Naukuva Dumka) I N Frantsevich 60 (1983)

  56. J F Nye Physical properties of crystals (Oxford: Oxford University Press) (1985)

    Google Scholar 

  57. R F S Hearmon and A A Maradudin Phys. Today 14 48 (1961)

    Google Scholar 

  58. M A Hadi, M Roknuzzaman, A Chroneos, S H Naqib, A Islam, V Volk and K Ostrikov Comput. Mater. Sci. 137 318 (2017)

    CAS  Google Scholar 

  59. M I Naher and S H Naqib J. Alloys Compd. 829 154509 (2020)

    CAS  Google Scholar 

  60. P K Sainia , D SAhlawat , S Daoud and D Singh. Indian J. Pure Appl. Phys. 57793 (2019)

  61. N Kh Abrikosov, V F Bankina, LV Poretskaya, LE Shelimova and E V Skudnova, Plenum, New York. 27 (1969)

  62. MA Nusimovici and LJ Birman Proc 7th Int Conf II-VI Semiconducting Compounds, (W A Benjamin Inc: Providence R I USA New York) 1204 (1967)

  63. M G Holland Phys. Rev. A. 134 471 (1964)

    CAS  Google Scholar 

  64. R J Goble and S D Scott Can Mineral. 23 273 (1985)

    CAS  Google Scholar 

  65. R C Sharma and Y A Chang J. Phase Equilibria. 17 425 (1996)

    CAS  Google Scholar 

  66. A A Maradudin, EW Montroll, GH Weiss and IP Patova (Academic Press, New York) (1971)

  67. R Majumder, M M Hossain and D Shen Mod. Phys. Lett. B 33 1950378 (2019)

    CAS  Google Scholar 

  68. R Yang, C Zhu, Q Wei and D Zhang Solid State Commun. 267 23 (2017)

    CAS  Google Scholar 

  69. H J Monkhorst and J D Pack Phys. Rev. B 13 5188 (1976)

    MathSciNet  Google Scholar 

  70. F Peng, H Fu and X Yang Phys. B Condens. Matter. 403 2851 (2008)

    CAS  Google Scholar 

  71. S A Khandy and J D Chai J. Appl. Phys. 127 165102 (2020)

    CAS  Google Scholar 

  72. M Florez, J Recio, E Francisco, M Blanco and A M Penda’s Phys. Rev. B 66 144112 (2002)

    Google Scholar 

  73. E Francisco, M Blanco and G Sanjurjo Phys. Rev. B 63 094107 (2001)

    Google Scholar 

  74. S A Khandy and J-D Chai J. Magn. Magn. Mater. 487 165289 (2019)

    CAS  Google Scholar 

  75. R Hill Proc. Phys. Soc. Lond. A 65 349 (1952)

    Google Scholar 

  76. A T Petit and P L Dulong Ann. Chim. Phys. 10 395 (1819)

    Google Scholar 

Download references

Acknowledgements

Researchers Supporting Project number (RSP2023R82), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Boudjelal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudjelal, M., Batouche, M., Seddik, T. et al. Electronic, elastic, and thermodynamic properties of Cd0.75TM0.25S (TM = Os or Ir) alloys with the TB-mBJ approach and hybrid density functional (HSE06). Indian J Phys 98, 921–935 (2024). https://doi.org/10.1007/s12648-023-02875-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02875-w

Keywords

Navigation