Log in

The impact of annealing on the electrical properties of ITO/n-CdSe Schottky junctions deposited by pulsed laser deposition technique

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the present work, CdSe thin film has been deposited on indium tin oxide (ITO)-coated glass substrate by the pulsed laser deposition (PLD) technique. Temperature-dependent current–voltage and capacitance–voltage characterization approaches are used to study the influence of post-deposition heat treatment (at temperatures of 150, 250, and 350 °C) on electrical properties. It is observed that the zero-bias barrier height and the ideality factor are substantially temperature dependent. The Mott–Schottky plot confirmed that the prepared CdSe thin film is an n-type semiconductor. The bandgap is estimated from the absorption data of the UV–Vis spectrometer using Tauc’s plot. This paper provides a thorough explanation of how electronic energy level diagram of the CdSe thin film on ITO-coated glass substrate was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current studies are available from the corresponding author on reasonable request.

References

  1. A S Khomane and P P Hankare J. Alloys Compd. 489 605 (2010)

    Article  Google Scholar 

  2. I A Kariper and O Baglayan Pol. A 128 219 (2015)

    Google Scholar 

  3. C Baban and G I Rusu Appl. Surf. Sci. 211 6 (2003)

    Article  ADS  Google Scholar 

  4. H H Gullu, M Isik, O Surucu, N M Gasanly and M Parlak Mater. Sci. Semicond. Process. 123 105559 (2021)

    Article  Google Scholar 

  5. E Gholami Hatam and N Ghobadi Sci. Semicond. Process. 43 177 (2016)

    Article  Google Scholar 

  6. S Hussain et al. Front. Chem. 9 661723 (2021)

    Article  Google Scholar 

  7. S Mathuri, K Ramamurthi and R Ramesh Babu Thin Solid Films 625 138 (2017)

    Article  ADS  Google Scholar 

  8. S Thanikaikarasan, S Karthickprabhu, D Dhanasekaran and V Vijayan Mater. Today Proc. 21 73 (2020)

    Article  Google Scholar 

  9. S Mahato and A K Kar J. Sci. Adv. Mater. Devices 2 165 (2017)

    Article  Google Scholar 

  10. S Mahato, N Shakti and A K Kar Mater. Sci. Semicond. Process. 39 742 (2015)

    Article  Google Scholar 

  11. F P N Inbanathan, P Kumar, K Dasari, R S Katiyar, J Chen and W M Jadwisienczak Materials (Basel). 14 3307 (2021)

    Article  ADS  Google Scholar 

  12. P Kumar, D Kumar, A Kumar and R S Katiyar J. Electron. Mater. 51 5759 (2022)

    Article  ADS  Google Scholar 

  13. P Kumar, Nisha, P Sarkar, S Singh, B C K Mishra, and R S Katiyar Appl. Phys. A Mater. Sci. Process. 128 372 (2022)

  14. C J Panchal, M S Desai, V A Kheraj, K J Patel and N Padha Semicond. Sci. Technol. 23 015003 (2008)

    Article  ADS  Google Scholar 

  15. S N Sarangi, P K Adhikari, D Pandey and S N Sahu J. Nanoparticle Res. 12 2277 (2010)

    Article  ADS  Google Scholar 

  16. R F Schmitsdorf J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 15 1221 (1997)

    Article  ADS  Google Scholar 

  17. R T Tung Phys. Rev. B 45 13509 (1992)

    Article  ADS  Google Scholar 

  18. S K Tripathi J. Mater. Sci. 45 5468 (2010)

    Article  ADS  Google Scholar 

  19. R B Kale and C D Lokhande Appl. Surf. Sci. 223 343 (2004)

    Article  ADS  Google Scholar 

  20. P A Chate, P P Hankare and D J Sathe J. Alloys Compd. 505 140 (2010)

    Article  Google Scholar 

  21. B P Modi and J M Dhimmar Proc. 2012 1st Int. Conf. Emerg. Technol. Trends Electron. Commun. Networking, ET2ECN 2012 (2012)

  22. I Dökme, Ş Altindal and M M Bülbül Appl. Surf. Sci. 252 7749 (2006)

    Article  ADS  Google Scholar 

  23. S K Tripathi and M Sharma J. Appl. Phys. 111 074513 (2012)

    Article  ADS  Google Scholar 

  24. Ş Aydoǧan, M Saǧlam and A Türüt Appl. Surf. Sci. 250 43 (2005)

    Article  ADS  Google Scholar 

  25. A Gümüs, A Türüt and N Yalçin J. Appl. Phys. 91 245 (2002)

    Article  ADS  Google Scholar 

  26. V L Devi, I Jyothi and V R Reddy Can. J. Phys. 90 73 (2012)

    Article  ADS  Google Scholar 

  27. S Mahato, D Biswas, L G Gerling, C Voz and J Puigdollers AIP Adv. 7 085313 (2017)

    Article  ADS  Google Scholar 

  28. A Tataroǧlu and F Z Pür Phys. Scr. 88 7889 (2013)

    Article  Google Scholar 

  29. C Bhattacharya and J Datta J. Solid State Electrochem. 11 215 (2007)

    Article  Google Scholar 

  30. Nisha, P Kumar, P Sarkar, and R S Katiyar Opt. Mater. (Amst.) 133 112792 (2022)

Download references

Acknowledgements

The authors are thankful to the University of Puerto Rio, Rio Piedras Campus SPECLAB, San Juan, USA, for providing the deposition and characterization facilities. The author acknowledges UGC New Delhi under Raman Fellowship (Grant No. 5-142/2016(IC)). The author also thankful to the Material Science Lab, Department of Physics, Gurukul Kangri (Deemed to be University), Haridwar-249404, Uttarakhand, India, for providing other lab facilities.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interest or personal relationship that could have appear to influence the work reported in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Sarkar, P., Nisha et al. The impact of annealing on the electrical properties of ITO/n-CdSe Schottky junctions deposited by pulsed laser deposition technique. Indian J Phys 97, 1417–1435 (2023). https://doi.org/10.1007/s12648-022-02473-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02473-2

Keywords

Navigation