Log in

Simulation study of optical turbulence in interstellar medium by phase screens

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The interstellar medium (ISM) is the most widely interested in astronomical fields. Understanding the behavior of the interstellar medium is needed for the concept of the evolution of stars. The variation of the interstellar medium’s refractive index, density, temperature, and pressure leads to turbulence. The turbulence has the main role in the star formation. In this paper, by using phase screen methods, the different turbulence models for the interstellar medium are simulated. Using two simulation methods, random processes and the phase spectral density, the different ISM patterns of phase screens are simulated in MATLAB programming. These patterns are phase power spectrum of the Kolmogorov, non-Kolmogorov, von-Karman, and Modified models for the turbulent medium as Giant Molecular Clouds, Cores, Nebulae, and Filaments. The results show that the Kolmogorov, von-Karman, and Modified turbulence models have more visibility than the non-Kolmogorov turbulence model. Then, by using of optical setup, laser beam propagates in a different medium that are simulated. Using the obtained results, the Fried parameter and the Strehl ratio were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J Roman-Duval, Ch Federrath, C h Brunt, M Heyer, J Jackson and R S Klessen A. p. J 740 120 (2011)

  2. D Falceta-Gonçalves, G Kowal, E Falgarone and A C L Chian Nonlinear Processes in Geophysics 21 587 (2014)

  3. K Ferrière Plasma Phys. Control. Fusion 62 14 (2020)

  4. H Yahia, N Schneider, S Bontemps, L Bonne, G Attuel, S Dib, V Ossenkopf, A Turiel, A Zebadua, D Elia, S. K Maji, F. G Schmitt and J. F Robitaille A &A 649 33 (2021)

  5. M Krumholz AIP conf 1 9 (2011)

  6. M Querejeta, F Lelli, E Schinnerer, D Colombo, U Lisenfeld, C G Mundell, F Bigiel, S García-Burillo, C N Herrera, A Hughes, J M D Kruijssen, S E Meidt and T J T Moore J Pety and A J Rigby A &A 645 A97 (2021)

    Google Scholar 

  7. L Hua-Bai Galaxies 9 41 (2021)

  8. L Bonne et al Buchbender and R Guesten A &A 641 A17 (2020)

    Google Scholar 

  9. R. B Larson MNRAS 194 809L (1981)

  10. P Hennebelle , Shu-ichiro Inutsuka, The Role of Magnetic Field in Molecular Cloud Formation and Evolution, Frontiers in Astronomy and Space Sciences 6 (2019)

  11. A Burkert C. R. physique 7 433 (2006)

  12. B Burkhart, A Lazarian, V Ossenkopf and J Stutzki The Astrophysical Journal 771 123 (2013)

  13. B G Elmegreen, J Scalo IBM Research Division 42 11 (2004)

  14. P Aghili, K Kokabi Astrophys Space Sci 64 362 (2017)

  15. A. N Kolmogorov C.R. Acad. Sci. a 30 301 (1951)

  16. A N Kolmogorov Proc. R. Soc. Land a 434 15 (1941)

  17. S R Spangler and C. R Gwinn ApJ 353 L29 (1990)

  18. S. K Ocker, J. M Cordes, S Chatterjee Nat Astron 5 761 (2021)

  19. Artem Y. Shikhovtsev, G. Kovadlo Pavel, A. Kopylov Evgeniy, Mansur A. Ibrahimov, Shuhrat A. Ehgamberdiev, and Yusufjon A. Tillayev. Atmosphere 12 1614 (2021)

  20. V P Lukin, E V Nosov, V V Nosov and A V Torgaev Appl. Opt. 55 163–168 (2016)

    Article  Google Scholar 

  21. V. I Tatarski Wave Propagation in a Turbulent Medium (New York: Academic) McGraw-Hill 1 (1961)

  22. F Roddier In Progress in Optics 19 281 (1981)

  23. L. C Andrews R. L Phillips Laser Beam Propagation through Random Media (SPIE press book), PM152 1-808 (2005)

  24. F Habibi, M Moniez and R Ansari S Rahvar A &A 552 A93 (2011)

    Google Scholar 

  25. D. L Fried J. Opt. Soc. Am. A 10 1372 (1966)

  26. M Krumholze, B Burkhart MNRAS 1 1671 (2016)

  27. J Peng, C Dongmei, W Dong, B Alastair Monthly Notices of the Royal Astronomical Society 447 1 (2015)

  28. B. L McGlamery Proc. SPIE 74 225 (1976)

  29. N Roddier Opt. Eng. 29 1174 (1990)

  30. K. A Winick Appl. Opt. 25 1817 (1986)

  31. J. R Clark and K Cahoy ApJ 867 1 (2018)

  32. M. B Haverkorn, C Gaensler and M Griffiths MNRAS 358 1 (2008)

  33. Ph Andre, M Talvard and A Roy A &A 2 6334 (2016)

  34. N. Murray ApJ 729 133 (2011)

  35. Lintu, Andrei and Lensch, Hendrik P. A. and Magnor, Marcus and El-Abed, Sascha and Seidel, Hans-Peter, The Eurographics Association 1727-8376 (2007)

  36. A Oklopcic and F Philip MNRAS 0 1 (2016)

  37. Herbig. G, H. Vrba, F. J, Astronomical Journal AJ 91 575H (1986)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser Rajabi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaee, M., Rajabi, Y. & Kokabi, K. Simulation study of optical turbulence in interstellar medium by phase screens. Indian J Phys 97, 337–345 (2023). https://doi.org/10.1007/s12648-022-02400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02400-5

Keywords

Navigation