Log in

Natural convection in an L-shaped enclosure using multi-relaxation time lattice Boltzmann method

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Natural convection in L-shaped geometries has many applications in many branches of engineering science, such as cooling of electronic equipment, nuclear reactors, and design of ventilation systems. The present paper studied the natural convective heat transfer and flow field in differentially heated L-shaped enclosures with viscous fluid using the multi-relaxation time lattice Boltzmann method (LBM-MRT). The study investigates the effect of the edge of L-shaped geometry on fluid flow and temperature field. We have also investigated the effect of non-dimensional parameters like Rayleigh number in the range of \((10^3\text {-}10^7)\)and Prandtl number (0.71, 1, 7). Nusselt number (Nu) and average Nu are also calculated along heated walls to study the heat transfer behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M Afrand Int. J. Thermal Sci.118 12 (2017)

  2. M Afrand, S Farahat, A H Nezhad, G A Sheikhzadeh and F Sarhaddi Heat Transf. Res.45 749 (2014)

    Article  Google Scholar 

  3. M Afrand, S Farahat, A H Nezhad, G A Sheikhzadeh, F Sarhaddi and S Wongwises Int. Commun. Heat Mass Transf.60 13 (2015)

    Article  Google Scholar 

  4. K B Nasr, R Chouikh, C Kerkeni and A Guizani Appl. Thermal Eng.26 772 (2006)

    Article  Google Scholar 

  5. M H Joshi, P Balamurugan, V P Venugopalan and T S Rao Biofouling27 621 (2011)

    Article  Google Scholar 

  6. D H Lim and S C Kim Appl. Thermal Eng.63 577 (2014)

    Article  Google Scholar 

  7. WaelAl-Kouz, B Mahanthesh, M S Alqarni and K Thriveni Int. Commun. Heat Mass Transf.126 105364 (2021)

  8. J Mackolil and B Mahanthesh Int. Commun. Heat Mass Transf.126 105361 (2021)

    Article  Google Scholar 

  9. B Mahanthesh, J Mackolil and S M Mallikarjunaiah Int. Commun. Heat Mass Transf.125 105348 (2021)

  10. B Mahanthesh, S A Shehzad, J Mackolil and N S Shashikumar Int. J. Heat Mass Transf.171 121081 (2021)

  11. B Mahanthesh, B J Gireesha, M Archana, T Hayat and A Alsaedi Int. J. Numer. Methods Heat Fluid Flow28 2423 (2018)

    Article  Google Scholar 

  12. W A Khan, S Farooq, S Kadry, M Hanif, F J Iftikhar and S Z Abbas Comput. Methods Programs Biomed.190 105355 (2020)

  13. W A Khan, A S Alshomrani, A K Alzahrani, M Khan and M Irfan Pramana J. Phys.91 63 (2018)

    Google Scholar 

  14. W A Khan and M Ali Appl. Phys. A125 1 (2019)

    Article  Google Scholar 

  15. C Cianfrini, M Corcione and P P Dell’Omo Int. J. Thermal Sci.44 441 (2005)

  16. M Al-Arabi and M K El-Riedy Int. J. Heat Mass Transf.19 1399 (1976)

    Article  ADS  Google Scholar 

  17. S W Churchill and H H Chu Int. J. Heat Mass Transf.18 1323 (1975)

    Article  Google Scholar 

  18. R Ruiz and E M Sparrow Int. J. Heat Mass Transf.30 2539 (1987)

    Article  Google Scholar 

  19. P Kandaswamy, J Lee and A K Abdul Hakeem Nonlinear Anal.: Model. Control12 203 (2007)

  20. M Mahmoodi Int. J. Thermal Sci.50 1731 (2011)

  21. M Kalteh and H Hasani Superlattices Microstruct.66 112 (2014)

    Article  ADS  Google Scholar 

  22. F Y Zhao G F Tang and D Liu Int. J. Eng. Sci.44 148 (2006)

    Article  Google Scholar 

  23. A I Alsabery, I Hashim, A J Chamkha, H Saleh and B Chanane Int. J. Numer. Methods Heat Fluid Flow27 1365 (2017)

  24. A I Alsabery, M A Sheremet, A J Chamkha and I J S R Hashim Sci. Rep. 8 1 (2018)

  25. I Hashim, A I Alsabery, M A Sheremet and A J Chamkha Adv. Powder Technol.30 399 (2019)

  26. G R McNamara and G Zanetti Phys. Rev. Lett.61 2332 (1988)

    Article  ADS  Google Scholar 

  27. F J Higuera, S Succi and R Benzi Europhys. Lett.9 345 (1989)

  28. H Chen, S Chen and W H Matthaeus Phys. Rev. A45 R5339 (1992)

  29. Y H Qian, D d’Humières and P Lallemand, P Europhys. Lett.17 479 (1992)

  30. D d’Humieres Rarefied Gas Dyn. 1992 450 (1992)

  31. U Frisch, B Hasslacher and Y Pomeau Phys. Rev. Lett.56 1505 (1986)

  32. P Lallemand and L S Luo Phys. Rev. E61 6546 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  33. Q Liu, Y L He, Q Li and W Q Tao Int. J. Heat Mass Trans.73 761 (2014)

  34. M E McCracken and J Abraham Phys. Rev. E71 036701 (2005)

  35. A A Mohamad Lattice Boltzmann Method Fundamental and Engineering Applications with Computer Codes (London: Springer) p 68 (2011)

  36. Q Liu, Y L He, D Li and Q Li Int. J. Heat Mass Transf.102 1334 (2016)

  37. B Mliki, M A Abbassi, K Guedri and A Omri Eng. Sci. Technol. Int. J.18 503 (2015)

  38. G de Vahl Davis Int. J. Numer. Methods Fluids3 249 (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahid, H., Khan, W.A. & Yaqoob, I. Natural convection in an L-shaped enclosure using multi-relaxation time lattice Boltzmann method. Indian J Phys 96, 2921–2939 (2022). https://doi.org/10.1007/s12648-021-02222-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02222-x

Keywords

Navigation