Log in

Optimization and Comparative Analysis of Rectangular and Slot Waveguide based Symmetric Ring and Racetrack Resonators for SoI Photonic Integrated Filters

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Over the past decades Silicon on Insulator (SoI) technology has tantalized the interest of researchers in the design of numerous nonlinear Photonic Integrated Circuits (PIC’s) to provide a variety of devices. In this manuscript, four different types of optical add/drop resonators are proposed and compared using their simulated microcomb notch filter performance. The four types of resonators are (i) rectangular waveguide based conventional ring resonator, (ii) slot waveguide based ring resonator, (iii) rectangular waveguide based racetrack resonator, and (iv) slot waveguide based racetrack resonator, for variety of active/passive applications. The resonator parameters: Free Spectral Range (FSR), Full Width at Half Maximum (FWHM), Finesse (F) and Quality factor (Q-factor) are evaluated and compared for four resonators. The resonators are optimized for different parameters, such as ring radius (R), gap (g) between the waveguides and coupling length (Lc). The optimized R of ~ 30 μm with the power coupled ‘g’ of 55 nm is found after performing rigorous simulations for the entire optical conventional band (C-band) i.e., in 1530 nm – 1565 nm using Finite Element Method (FEM). The manuscript provides valuable insights into the design considerations and performance trade-offs of different optical resonators in PICs showing symmetricity along x-axis and y-axis. These findings can guide the development of efficient and high-performance integrated photonic devices for various applications, including communication and computing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chiles J, Fathpour S (2017) Silicon photonics beyond silicon-on-insulator. J Opt 19(5):053001. https://doi.org/10.1088/2040-8986/aa5f5e

  2. Baets R et al (2016) Silicon Photonics: silicon nitride versus silicon-on-insulator. In: Optical Fiber Communication Conference, p. Th3J.1. https://doi.org/10.1364/OFC.2016.Th3J.1

  3. Vardhan S, Singh RR (2022) Design, simulation and performance comparison of SoI rectangular waveguide and SMF for methane detection. In: Integrated Photonics Platforms II, p 32. https://doi.org/10.1117/12.2621459

  4. Singh RR (2020) Dispersion tailoring of silicon nanowire optical rectangular waveguide (SNORW). SN Appl Sci 2(3):502. https://doi.org/10.1007/s42452-020-2309-z

    Article  CAS  Google Scholar 

  5. Jalali B, Yegnanarayanan S, Yoon T, Yoshimoto T, Rendina I, Cop**er F (1998) Advances in silicon-on-insulator optoelectronics. IEEE J Sel Top Quantum Electron 4(6):938–947. https://doi.org/10.1109/2944.736081

    Article  CAS  Google Scholar 

  6. McPolin CP et al (2016) Universal switching of plasmonic signals using optical resonator modes. Light Sci Appl 6(6):e16237–e16237. https://doi.org/10.1038/lsa.2016.237

    Article  CAS  Google Scholar 

  7. Xu J, Zhang Y, Guo X, Huang Q, Zhang X, Su Y (2021) Ultra-narrow passband-tunable filter based on a high-Q silicon racetrack resonator. Opt Lett 46(22):5575. https://doi.org/10.1364/OL.443723

    Article  PubMed  Google Scholar 

  8. Ma Y et al (2021) Silicon add-drop multiplexer based on π phase-shifted antisymmetric bragg grating. IEEE J Quantum Electron 57(4):1–8. https://doi.org/10.1109/JQE.2021.3078060

    Article  CAS  Google Scholar 

  9. Meng Y, Lu R, Shen Y, Liu Y, Gong M (2017) Ultracompact graphene-assisted ring resonator optical router. Opt Commun 405:73–79. https://doi.org/10.1016/j.optcom.2017.07.084

    Article  CAS  Google Scholar 

  10. Pu M et al (2018) Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing. Laser Photon Rev 12(12):1800111. https://doi.org/10.1002/lpor.201800111

    Article  CAS  Google Scholar 

  11. Shekhawat D, Mehra R (2022) Design of ultra-compact and highly-sensitive graphene assisted silicon micro-ring resonator modulator for switching applications. Silicon 14(8):4383–4390. https://doi.org/10.1007/s12633-021-01219-9

    Article  CAS  Google Scholar 

  12. Komljenovic T et al (2017) Widely-tunable ring-resonator semiconductor lasers. Appl Sci 7(7):732. https://doi.org/10.3390/app7070732

    Article  CAS  Google Scholar 

  13. Mosquera C, Shoman H, Chrostowski L (2020) A tunable optical notch filter on SOI platform. In: IEEE Photonics Conference (IPC), pp 1–2. https://doi.org/10.1109/IPC47351.2020.9252300

  14. Liu L, Liao S (2023) Ultra-high peak rejection, sub-gigahertz narrowband and bandwidth tunable microwave photonic filter based on silicon racetrack resonators. J Light Technol 1–7. https://doi.org/10.1109/JLT.2023.3269083

  15. Liu L, Ye M, Xue W (2023) Silicon-on-insulator-based narrowband microwave photonic filter with widely tunable bandwidth. J Light Technol 1–7. https://doi.org/10.1109/JLT.2023.3283964

  16. Nawrocka MS, Liu T, Wang X, Panepucci RR (2006) Tunable silicon microring resonator with wide free spectral range. Appl Phys Lett 89(7):071110. https://doi.org/10.1063/1.2337162

    Article  CAS  Google Scholar 

  17. Simos H, Bogris A, Raptis N, Syvridis D (2010) Dynamic properties of a WDM switching module based on active microring resonators. IEEE Photonics Technol Lett 22(4):206–208. https://doi.org/10.1109/LPT.2009.2037517

    Article  Google Scholar 

  18. Tian Y et al (2016) Reconfigurable electro-optic logic circuits using microring resonator-based optical switch array. IEEE Photonics J 8(2):1–8. https://doi.org/10.1109/JPHOT.2016.2524009

    Article  CAS  Google Scholar 

  19. Yu ZL, Liu GN, Qiu S, Wei Y, Shen S, **ong Q (2010) Regularized sparse recovery for optical power monitoring with low-cost tunable optical filters. IEEE Photonics Technol Lett 22(10):697–699. https://doi.org/10.1109/LPT.2010.2044169

    Article  Google Scholar 

  20. Klein EJ, Geuzebroek DH, Kelderman H, Sengo G, Baker N, Driessen A (2005) Reconfigurable optical add-drop multiplexer using microring resonators. IEEE Photonics Technol Lett 17(11):2358–2360. https://doi.org/10.1109/LPT.2005.858131

    Article  CAS  Google Scholar 

  21. ** L et al (2014) Integrated optical chemical sensor based on an SOI ring resonator using phase-interrogation. IEEE Photonics J 6(5):1–7. https://doi.org/10.1109/JPHOT.2014.2352973

    Article  Google Scholar 

  22. Rabus DG, Sada C (2020) Integrated Ring resonators, vol 127. Springer International Publishing, Cham

    Google Scholar 

  23. Rouger N, Chrostowski L, Vafaei R (2010) Temperature effects on Silicon-on-insulator (SOI) racetrack resonators: a coupled analytic and 2-D finite difference approach. J Light Technol 28(9):1380–1391. https://doi.org/10.1109/JLT.2010.2041528

    Article  CAS  Google Scholar 

  24. Feng J, Akimoto R, Hao Q, Zeng H (2017) Three-dimensional cross-coupled Silicon Nitride racetrack resonator-based tunable Optical Filter. IEEE Photonics Technol Lett 29(9):771–774. https://doi.org/10.1109/LPT.2017.2685430

    Article  CAS  Google Scholar 

  25. Dell’Olio F, Conteduca D, Brunetti G, Armenise MN, Ciminelli C (2018) Novel CMOS-compatible athermal and polarization-insensitive ring resonator as photonic notch filter. IEEE Photonics J 10(6):1–11. https://doi.org/10.1109/JPHOT.2018.2877081

    Article  Google Scholar 

  26. Khozeymeh F, Razaghi M (2019) Optimized bent part coupling SiON racetrack resonators for biological sensing. IEEE Sens J 19(4):1299–1306. https://doi.org/10.1109/JSEN.2018.2879784

    Article  CAS  Google Scholar 

  27. Song J et al (2020) Ultrasound measurement using on-chip optical micro-resonators and digital optical frequency comb. J Light Technol 38(19):5293–5301. https://doi.org/10.1109/JLT.2020.2982211

    Article  CAS  Google Scholar 

  28. Suter JD, White IM, Zhu H, Fan X (2007) Thermal characterization of liquid core optical ring resonator sensors. Appl Opt 46(3):389. https://doi.org/10.1364/AO.46.000389

    Article  PubMed  Google Scholar 

  29. Feng Z, He Y, Yan W, Yang F, Han W, Li Z (2020) Progress of waveguide ring resonators used in micro-optical gyroscopes. Photonics 7(4):96. https://doi.org/10.3390/photonics7040096

    Article  CAS  Google Scholar 

  30. Srivastava D, Vardhan S, Singh RR (2023) SoI Based Optical 1 × 2 Wavelength Independent 3-dB power splitter design using three rectangular cross-sectional cuboidal waveguides. Silicon 15(3):1381–1391. https://doi.org/10.1007/s12633-022-02105-8

    Article  CAS  Google Scholar 

  31. Zhang J et al (2022) All-silicon multi-band TM-pass polarizer on a 220 nm SOI enabled by multiplexing grating regimes. Opt Express 30(1):326. https://doi.org/10.1364/OE.447435

    Article  CAS  PubMed  Google Scholar 

  32. Quack N et al (2023) Integrated silicon photonic MEMS. Microsyst Nanoeng 9(1):27. https://doi.org/10.1038/s41378-023-00498-z

    Article  CAS  PubMed  Google Scholar 

  33. Xu Q, Almeida VR, Panepucci RR, Lipson M (2004) Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt Lett 29(14):1626. https://doi.org/10.1364/OL.29.001626

    Article  CAS  PubMed  Google Scholar 

  34. Passaro VMN, Notte ML (2012) Optimizing SOI Slot waveguide fabrication tolerances and strip-slot coupling for very efficient optical sensing. Sensors 12(3):2436–2455. https://doi.org/10.3390/s120302436

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huang W-P (1994) Coupled-mode theory for optical waveguides: an overview. J Opt Soc Am a 11(3):963. https://doi.org/10.1364/josaa.11.000963

    Article  Google Scholar 

  36. Pu M et al (2010) Tunable microwave phase shifter based on silicon-on-insulator microring resonator. IEEE Photonics Technol Lett 22(12):869–871. https://doi.org/10.1109/LPT.2010.2046725

    Article  Google Scholar 

  37. Claes T, Molera JG, De Vos K, Schacht E, Baets R, Bienstman P (2009) Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator. IEEE Photonics J 1(3):197–204. https://doi.org/10.1109/JPHOT.2009.2031596

    Article  Google Scholar 

  38. Gostimirovic D, Ye WN (2021) Compact silicon-photonic mode-division (de)multiplexer using waveguide-wrapped microdisk resonators. Opt Lett 46(2):388. https://doi.org/10.1364/OL.412578

    Article  PubMed  Google Scholar 

  39. Yu H et al (2023) A 32-Channel C-Band Hybrid Wavelength/ Polarization Division (de)multiplexer on Silicon. IEEE Photonics J 15(3):1–6. https://doi.org/10.1109/JPHOT.2023.3266393

    Article  Google Scholar 

  40. Kim D-G et al (2020) Universal light-guiding geometry for on-chip resonators having extremely high Q-factor. Nat Commun 11(1):5933. https://doi.org/10.1038/s41467-020-19799-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu L et al (2020) Greater than one billion Q factor for on-chip microresonators. Opt Lett 45(18):5129. https://doi.org/10.1364/OL.394940

    Article  PubMed  Google Scholar 

  42. Little BE, Chu ST, Haus HA, Foresi J, Laine J-P (1997) Microring resonator channel drop** filters. J Light Technol 15(6):998–1005. https://doi.org/10.1109/50.588673

    Article  Google Scholar 

  43. Bogaerts W et al (2006) Compact wavelength-selective functions in silicon-on-insulator photonic wires. IEEE J Sel Top Quantum Electron 12(6):1394–1401. https://doi.org/10.1109/JSTQE.2006.884088

    Article  CAS  Google Scholar 

  44. Sahafi M, Habibzadeh-Sharif A (2019) All-optical trap**, relocation, and manipulation of nanoparticles using SOI ring resonators. J Opt Soc Am B 36(8):2178. https://doi.org/10.1364/JOSAB.36.002178

    Article  CAS  Google Scholar 

  45. Zhang L et al (2020) Ultrahigh-Q silicon racetrack resonators. Photonics Res 8(5):684. https://doi.org/10.1364/PRJ.387816

    Article  CAS  Google Scholar 

  46. Hu W et al (2023) A silicon micro-ring resonator with unprecedented large free spectral range via double injection. Opt Commun 546:129767. https://doi.org/10.1016/j.optcom.2023.129767

    Article  CAS  Google Scholar 

  47. Nikitin AA et al (2022) Optical bistable SOI micro-ring resonators for memory applications. Opt Commun 511:127929. https://doi.org/10.1016/j.optcom.2022.127929

    Article  CAS  Google Scholar 

  48. Mou B et al (2022) Ultrahigh Q SOI ring resonator with a strip waveguide. Opt Commun 505:127437. https://doi.org/10.1016/j.optcom.2021.127437

    Article  CAS  Google Scholar 

  49. Shi B, Chen X, Cai Y, Zhang S, Wang T, Wang Y (2022) Compact slot microring resonator for sensitive and label-free optical sensing. Sensors 22(17):6467. https://doi.org/10.3390/s22176467

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fu P-H, Chiang T-Y, Cheng N-C, Ma Y-F, Huang D-W (2016) Microring resonator composed of vertical slot waveguides with minimum polarization mode dispersion over a wide spectral range. Appl Opt 55(13):3626. https://doi.org/10.1364/AO.55.003626

    Article  CAS  PubMed  Google Scholar 

  51. Liu C et al (2022) Design and optimization of asymmetric grating assisted slot Microring. Photonics 9(12):988. https://doi.org/10.3390/photonics9120988

    Article  CAS  Google Scholar 

  52. Bahadoran M, Seyfari AK, Sanati P, Chua LS (2022) Label free identification of the different status of anemia disease using optimized double-slot cascaded microring resonator. Sci Rep 12(1):5548. https://doi.org/10.1038/s41598-022-09504-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Butt MA, Khonina SN, Kazanskiy NL (2021) Device performance of standard strip, slot and hybrid plasmonic µ-ring resonator: a comparative study. Waves Random and Complex Media 31(6):2397–2406. https://doi.org/10.1080/17455030.2020.1744769

    Article  Google Scholar 

  54. Singh RR, Kumari S, Gautam A, Priye V (2019) Glucose sensing using slot waveguide-based SOI ring resonator. IEEE J Sel Top Quantum Electron 25(1):1–8. https://doi.org/10.1109/JSTQE.2018.2879022

    Article  CAS  Google Scholar 

  55. Zhang W, Zhang X, Zhang X, ** H, ** Q, Jian J (2018) A single slot micro-ring structure for simultaneous CO 2 and CH 4 gas sensing. Eur Phys J Appl Phys 82(3):30502. https://doi.org/10.1051/epjap/2018180093

    Article  CAS  Google Scholar 

  56. Zhang C, Zhao C (2019) Sensitive label-free and compact ultrasonic sensor based on double silicon-on-insulator slot micro-ring resonators. Optik (Stuttg) 178:1029–1034. https://doi.org/10.1016/j.ijleo.2018.09.101

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Indian Science Technology and Engineering facilities Map (I-STEM) for providing software license support of COMSOL Multiphysics 6.0 used to carry out this work. This work has been carried out in the Department of Electronics and Communication Engineering at Netaji Subhas University of Technology, Delhi.

Funding

There is no funding involved in this research work.

Author information

Authors and Affiliations

Authors

Contributions

Shalini Vardhan: Performed simulations, Data collection, Data curation, Writing - Original draft. Ritu Raj Singh: Conceptualization, Review and Editing.

Corresponding author

Correspondence to Ritu Raj Singh.

Ethics declarations

Ethics Approval

The authors ensure that accepted principles of ethical and professional conduct have been followed during this research work.

The authors of this manuscript declare no conflicts of interest. This research do not involve any Human Participants and/or Animals.

Consent to Participate

Consent was obtained from all the authors who contributed in the research work.

Consent for Publication

The authors give full consent for publication of this research work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vardhan, S., Singh, R.R. Optimization and Comparative Analysis of Rectangular and Slot Waveguide based Symmetric Ring and Racetrack Resonators for SoI Photonic Integrated Filters. Silicon 16, 2913–2926 (2024). https://doi.org/10.1007/s12633-024-02879-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-024-02879-z

Keywords

Navigation