Log in

Seed Priming with Nano Silica Alleviates Drought Stress through Regulating Antioxidant Defense System and Osmotic Adjustment in Soybean (Glycine max L.)

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The soybean seeds were subjected to priming treatments using varying concentration of silicon dioxide (SiO2) nanoparticles in conjunction with water. The study assessed the effects of SiO2 nanoparticles on seed germination, seedling vigour, biochemical parameters, and osmotic adjustments in seeds that were primed with SiO2 nanoparticles, hydroprimed, and control seeds. These evaluations were conducted under conditions of moisture stress generated by PEG 6000 at -4 and -5 bars, as well as under non-drought stress condition. The findings of the study indicate that lower concentrations of SiO2 nanoparticles (NPs) had a positive impact on seed physiological and biochemical parameters. Conversely, higher concentrations of SiO2 NPs during priming resulted in reduced seed germination and antioxidant activity, both in drought stress and non stress conditions. Soybean seeds that were treated with silicon dioxide nanoparticles (SiO2 NPs) at a concentration of 500 mg/liter exhibited the highest rate of germination, germination percentage, and seedling vigour in non drought stress and in drought stress at -4 and -5 bars. The application of silicon dioxide nanoparticles (SiO2 NPs) at a concentration of 500 mg/liter during seed priming resulted in an enhancement in antioxidant enzyme activities, including catalase, peroxidase, and superoxide dismutase. Additionally, the seedlings exhibited increased levels of proline and relative water content, while experiencing a reduction in electrolyte leakage from the leaves under conditions of moisture stress generated by polyethylene glycol (PEG).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All relevant data are available within the research paper.

References

  1. Kuromori T, Fujita M, Takahashi F, Yamaguchi-Shinozaki K, Shinozaki K (2022) Inter-tissue and inter-organ signaling in drought stress response and phenoty** of drought tolerance. The Plant J 109:342–358

    Article  CAS  PubMed  Google Scholar 

  2. Liu Z, Li H, Gou Z, Zhang Y, Wang X, Ren H, Wen ZB, Kang K, Li Y, Yu L, Gao H, Wang D, Qi X, Qiu L (2020) Genome-wide association study of soybean seed germination under drought stress. Mol Genet Gen 295(3):661–673

    Article  CAS  Google Scholar 

  3. Arya H, Singh MB, Bhalla PL (2021) Towards Develo** Drought-smart Soybeans. Front Plant Sci 12:750664. https://doi.org/10.3389/fpls.2021.750664

    Article  PubMed  PubMed Central  Google Scholar 

  4. Poudel S, Vennam RR, Shrestha A (2023) Resilience of soybean cultivars to drought stress during flowering and early-seed setting stages. Sci Rep 13:1277. https://doi.org/10.1038/s41598-023-28354-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Igiehon NO, Babalola OO, Cheseto X, Torto B (2021) Effects of rhizobia and arbuscular mycorrhizal fungi on yield, size distribution and fatty acid of soybean seeds grown under drought stress. Microbiol Res 242:126640

    Article  CAS  PubMed  Google Scholar 

  6. Ribeiro IO, Andreoli RV, Kayano MT, Sousa TR, Medeiros A, Godoi RHM, Godoi AFL, Junior SD, Martin ST, Souza RAFD (2018) Biomass burning and carbon monoxide patterns in Brazil during the extreme drought years of 2005, 2010, and 2015. Environ pollut 243:1008–1014

    Article  CAS  PubMed  Google Scholar 

  7. Imran M, Latif A, Khan R, Shahzad M, Aaqil Khan S, Bilal A, Khan S, Kang M, Lee IJ, Wilkins O (2021) Exogenous melatonin induces drought stress tolerance by promoting plant growth and antioxidant defence system of soybean plants. AoB Plants 13(4):plab026. https://doi.org/10.1093/aobpla/plab026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luz LM, Alves EC, Vilhena NQ, Oliveria DNG, Zara GPS, Joze MNF, Neto CFO, Roberto CLC, Cavalcante L (2023) Distinct physiological mechanisms underpin growth and rehydration of Hymenaea courbaril and Hymenaea stigonocarpa upon short-term exposure to drought stress. J For Res 34:113–123. https://doi.org/10.1007/s11676-022-01558-2

    Article  CAS  Google Scholar 

  9. Dowling DK, Simmons LW (2009) Reactive oxygen species as universal constraints in life-history evolution. Proc Biol Sci 276(1663):1737–1745. https://doi.org/10.1098/rspb.2008.1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. **ong R, Liu S, Considine MJ, Siddique KH, Lam HM, Chen Y (2021) Root system architecture, physiological and transcriptional traits of soybean (Glycine max L.) in response to water deficit: A review. Physiol Plant 172:405–418

    Article  CAS  PubMed  Google Scholar 

  11. Wei Z, Paredes P, Liu Y, Chi WW, Pereira LS (2015) Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain. Agric Water Manag 147:43–53

    Article  Google Scholar 

  12. Chowdhury J, Karim M, Khaliq Q, Ahmed A, Mondol AM (2017) Effect of drought stress on water relation traits of four soybean genotypes. SAARC J Agric 15:163–175

    Article  Google Scholar 

  13. Wang M, Wang R, Mur LAJ, Ruan J, Shen Q, Guo S (2021) Functions of silicon in plant drought stress responses. Hortic Res 8:254. https://doi.org/10.1038/s41438-021-00681-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Farooq MA, Saqib ZA, Akhtar, (2015) Silicon-mediated oxidative stress tolerance and genetic variability in rice (Oryza sativa L.) grown under combined stress of salinity and boron toxicity. Turk J Agric 39:718–729

    Article  CAS  Google Scholar 

  15. Almutairi ZM (2016) Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. POJ 9(1):106–114

    CAS  Google Scholar 

  16. McNaughton SJ (1985) Ecology of a grazing ecosystem: the Serengeti. Ecol Monogr 55:259–294

    Article  Google Scholar 

  17. Epstein E (1999) Silicon. Annu Rev of Plant Physiol Plant Mol 50:641–664

    Article  CAS  Google Scholar 

  18. Korndorfer G, Snyder GH, Ulloa M, Powell G, Datnoff LE (2001) Calibration of soil and plant silicon analysis for rice production. Journal Plant Nut 24(7):1071–1084

    Article  Google Scholar 

  19. Ayed S, Othmani A, Bouhaouel I, Rasaa N, Othmani S, Amara HS (2021) Effect of silicon (Si) seed priming on germination and effectiveness of its foliar supplies on durum wheat (Triticum turgidum L. ssp. durum) genotypes under semi-arid environment. Silicon 1–11. https://doi.org/10.1007/s12633-021-00963-2

  20. Akhtar N, Llyas N, Mashwani Z, Hayat R, Yasmin H, Noureldeen A, Ahamad P (2021) Synergistic effects of plant growth promoting rhizobacteria and silicon dioxide nano-particles for amelioration of drought stress in wheat. Plant Physio Biochem 166:160–176

    Article  CAS  Google Scholar 

  21. Fatemi H, Esmaiel B, Rizwan M (2020) Isolation and characterization of lead (Pb) resistant microbes and their combined use with silicon nanoparticles improved the growth, photosynthesis and antioxidant capacity of coriander (Coriandrum sativum L.) under Pb stress. Environ Pollut 266(Pt 3):114982. https://doi.org/10.1016/j.envpol.2020.114982

    Article  CAS  PubMed  Google Scholar 

  22. Bradford K (1986) Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. Hort Science 21:1105–1112

    Article  Google Scholar 

  23. Vanitha C, Kathiravan M (2022) A novel seed priming technique for enhancing seed vigour and yield potential in marginal vigour seeds of blackgram (Vigna mungo L.). Legume Res 45(8):988–993

    Google Scholar 

  24. Nile SH, Thiruvengadam M, Wang Y, Ramkumar S, Mohammad AS, Maksim R, Arti N, Meihong S, Baskar V, **ao J, Kai G (2022) Nano-priming as emerging seed priming technology for sustainable agriculture-recent developments and future perspectives. J Nanobiotechnol 20:254. https://doi.org/10.1186/s12951-022-01423-8

    Article  CAS  Google Scholar 

  25. An J, Hu P, Li F, Wu H, Shen Y, White JC, Tian X, Li Z, Giraldo JP (2020) Emerging Investigator Series: Molecular Mechanisms of Plant Salinity Stress Tolerance Improvement by Seed Priming with Cerium Oxide Nanoparticles. Environ Sci Nano 7:2214–2228

    Article  CAS  Google Scholar 

  26. Rai KP, Tomar P, Jajoo RS (2021) Seed Nanopriming by Silicon Oxide Improves Drought Stress Alleviation Potential in Wheat Plants. Funct Plant Biol 48:905–915

    Article  Google Scholar 

  27. Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017) Nanopriming Technology for Enhancing Germination and Starch Metabolism of Aged Rice Seeds Using Phytosynthesized Silver Nanoparticles. Sci Rep 7:8263

    Article  PubMed  PubMed Central  Google Scholar 

  28. Abou ZHM, Ismail GSM, Abdel-Latif SA (2021) Influence of Seed Priming with ZnO Nanoparticles on the Salt-Induced Damages in Wheat (Triticum aestivum L.) Plants. J Plant Nutr 44:629–643

    Article  Google Scholar 

  29. Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon Dioxide Mitigates the Adverse Effects of Salt Stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429–2437

    Article  CAS  PubMed  Google Scholar 

  30. Waqas MM, Ishtiaq M, Hussain I, Parveen A, Hayat Bhatti K, Azeem M, Thind S, Ajaib M, Maqbool M, Sardar T (2022) Seed Nano-Priming with Zinc Oxide Nanoparticles in Rice Mitigates Drought and Enhances Agronomic Profile. PLoS ONE 17:e0264967

    Article  Google Scholar 

  31. Michel BE, Kaufmann MRJ (1973) The osmotic potential of polyethylene glycol 6000. Plant Physiol 51(5):914–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Farooq BSMA, Ahmad N (2005) Thermal hardening: a new seed vigor enhancement tool in rice. J Integr Plant Biol 47(2):187–193

    Article  Google Scholar 

  33. Abdul Baki AA, Anderson JD (1973) Vigor determination in soybean seed by multiple criteria 1. Crop Sci 13(6):630–633

    Article  Google Scholar 

  34. Barrs H, Weatherly P (1962) Physiological indices for high yield potential in wheat. Indian J Plant Physiol 25:352–357

    Google Scholar 

  35. Wu W, Zhang Q, Ervin EH, Yang Z, Zhang X (2017) Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Front Plant Sci 8:1017

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bates LS, Waldren RP, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  37. Arnon DL (1949) Copper enzymes in isolated chloroplast polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kittock DL, Law AG (1968) Relationship of seedling vigour, respiration and tetrazolium chloride reduction by germination of wheat seeds. Agron J 60:286–288

    Article  CAS  Google Scholar 

  39. Aebi H (1983) Catalase in vitro Meth enzymol 105:121–126

    Article  Google Scholar 

  40. Malik R, Singh C (1980) The effect of organic acids and cycocel on peroxidase activity of cotton seedlings. Agrochimica 24(5/6):478–481

    CAS  Google Scholar 

  41. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal biochem 44(1):276–287

    Article  CAS  PubMed  Google Scholar 

  42. Feiz H, Rezvani MP, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace ElemRes 146:101–106

    Article  Google Scholar 

  43. Khan E, Gupta M (2018) Arsenic–silicon priming of rice (Oryza sativa L.) seeds influence mineral nutrient uptake and biochemical responses through modulation of Lsi-1, Lsi-2, Lsi-6 and nutrient transporter genes. Sci Rep 8:10301. https://doi.org/10.1038/s41598-018-28712-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rayhaneh A, Maryam N, Mohammad S (2017) Impact of zinc and zinc oxide nanoparticles on the physiological and biochemical processes in tomato and wheat. Bot 95(5):441–455. https://doi.org/10.1139/cjb-2016-0194

    Article  CAS  Google Scholar 

  45. Chen K, Arora R (2013) Priming memory invokes seed stress-tolerance. Environ Exp Bot 94:33–45. https://doi.org/10.1016/j.envexpbot.2012.03.005

    Article  CAS  Google Scholar 

  46. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of Spinach. Biol Trace Elem Res 105:83–91. https://doi.org/10.1385/BTER:104:1:083

    Article  Google Scholar 

  47. Mundada PS, Barvkar VT, Umdale SD, Anil Kumar S, Nikam TD, Ahire ML (2021) An insight into the role of silicon on retaliation to osmotic stress in finger millet (Eleusine coracana (L.) Gaertn). J Hazard Mater 403:124078. https://doi.org/10.1016/J.JHAZMAT.2020.124078

    Article  CAS  PubMed  Google Scholar 

  48. Rehane A, Mohammad JB, Hassan F, Amin A (2019) Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheat grass (Agropyron elongatum L.). Pol J Chem Tech 16(3):25–29

    Google Scholar 

  49. Yin L, Wang S, Liu P, Wang W, Cao D, Deng X, Zang S (2014) Silicon-mediated changes in polyamine and 1- aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L. Plant Physiol Biochem 80:268–277

    Article  CAS  PubMed  Google Scholar 

  50. Fleck AT, Schulze S, Martin H, Andre S, Friedrich W, Lukas S, Manfred KS (2015) Silicon promotes exodermal casparian band formation in Si accumulating and si-excluding species by forming phenol complexes. PLoS ONE 10:e0138555

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fleck AT, Nye T, Carnelia R, Frank S, Marc Z, Manfred KS (2011) Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J Exp Bot 62:2001–2011

    Article  CAS  PubMed  Google Scholar 

  52. Lu MMD, De Silva DMR, Peralta EK, Fajardo AN, Peralta MM (2015) Effects of nanosilica Powder from rice hull ash on seed germination of tomato (Lycopersicon esculentum). Applied Res Develop 5:11–22

    Google Scholar 

  53. Yuvakkumar R, Elango V, Rajendran V (2011) Influence of nanosilica powder on the growth of maize crop (Zea Mays L.). Inter Green Nanotechnol 3:180–190

    Article  CAS  Google Scholar 

  54. Nair R, Poulose AC, Nagaoka Y (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolables for plants. J Fluoresc 21:2057–2068

    Article  CAS  PubMed  Google Scholar 

  55. Emamverdian A, Ding Y, Mokhberdoran F, Ahmad Z, **e Y (2021) The Effect of Silicon Nanoparticles on the Seed Germination and Seedling Growth of Moso Bamboo (Phyllostachys edulis) under Cadmium Stress. Pol J Environ Stud 30(4):3033–3034. https://doi.org/10.15244/pjoes/129683

    Article  CAS  Google Scholar 

  56. Qados AAMS, Moftah AE (2015) Influence of silicon and nano-silicon on germination growth and yield of faba bean (Vicia faba L.) under salt stress conditions. Am J Soc Hortic Sci 5(6):509–524

    Google Scholar 

  57. Tahir M, Rahmatullah A, Aziz T, Ashraf M (2010) Wheat genotype differed significantly in their response to silicon nutrition under salinity stress. J Plant Nutr 33:1658–1671

    Article  CAS  Google Scholar 

  58. Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855

    Article  CAS  PubMed  Google Scholar 

  59. Hamayun M, Sohn E, Afzal Khan S, Shinwari Z, Latif Khan A, Lee I (2010) Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycine max L.). Pak J Bot 42(3):1713–1722

    CAS  Google Scholar 

  60. Lu CM, Zhang CY, Wu JQ, Tao MX (2002) Research of the effect of nanometer on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168–172

    CAS  Google Scholar 

  61. SivakumarR NG, Chandrasekaran G, Boominathan P, Senthilkumar M (2017) impact of pink pigmented facultative methylotroph and PGRs on water status, photosynthesis, proline and NR activity in tomato under drought. Int J Curr Microbiol Appl Sci 6(6):1640–1651

    Article  Google Scholar 

  62. Raza MAS, Zulfiqar B, Iqbal R, Muzamil MN, Aslam MU, Muhammad F, Amin J, Aslam HMU, Ibrahim MA, Uzair M, Habib-Ur-Rahman M (2023) Morpho-physiological and biochemical response of wheat to various treatments of silicon nano-particles under drought stress conditions. Sci Rep 13(1):2700. https://doi.org/10.1038/s41598-023-29784-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2(6):477–486

    Article  CAS  PubMed  Google Scholar 

  64. Pariya P, Rayhaneh A Somayeh B (2023) Interactive effect of silicon and nitric oxide effectively contracts copper toxicity in Salvia officinalis L.. Int J Phytoremediation. https://doi.org/10.1080/15226514.2023.2199875

  65. Riazi A, Matsuda K, Arslan A (1985) Water-stress induced changes in concentrations of proline and other solutes in growing regions of young barley leaves. J Exp Bot 36(11):1716–1725

    Article  CAS  Google Scholar 

  66. IrigoyenJ ED, Sanchez Diaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant 84(1):55–60

    Article  Google Scholar 

  67. Moukhtari AEl, Mariem K, Walid Z, Cécile C, Chedly A, Mohamed F, Arnould S (2023) How silicon alleviates the effect of abiotic stresses during seed germination: A review. J Plant Growth Regul 42:3323–3341

    Article  Google Scholar 

  68. Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97. https://doi.org/10.1016/j.tplants.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  69. Garcia A, Landeral M, Pestana PJ, Correia LMT (2017) Lavandula multifida response to salinity: Growth, nutrient uptake, and physiological changes. J Plant Nut Soil Sci 180(1):96–104

    Article  Google Scholar 

  70. Yanli PD, Zhao Q, Chen L, Yao X, Zhang W, Zhang B, Futi X (2020) Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiol Biochem 146:1–12

    Article  Google Scholar 

  71. Maryam V, Rayhaneh A, Alimohammad A (2019) Seed priming with H2S and Ca2+ trigger signal memory that induces cross-adaptation against nickel stress in zucchini seedlings. Plant Physiol Biochem 143:286–298. https://doi.org/10.1016/j.plaphy.2019.09.016

    Article  CAS  Google Scholar 

  72. Siddiqui MH, Al-Wlhaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum Mill.). Saudi J Biol Sci 21(1):13–17. https://doi.org/10.1016/j.sjbs.2013.04.005

    Article  CAS  PubMed  Google Scholar 

  73. Gandomani VM, Omidi H, Bostani AA (2019) Study on effects of pretreatment nano-particle silicon dioxide (SiO2) on seed germination and biochemical indicate of soybean (Glycine max L.) cultivars under salinity. Iran J Seed Res 6(3):299–316

    Google Scholar 

  74. Liang YC (1998) Effect of silicon on leaf ultra structure, chlorophyll content and photosynthetic activity of barley under salt stress. Pedosphere 8:289–296

    Google Scholar 

  75. Asgari F, Majd A, Jonoubi P, Najafi F (2018) Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.). Plant Physiol Biochem 127:152–160

    Article  CAS  PubMed  Google Scholar 

  76. Pirooz P, Amooaghaie R, Fariba Ahadi A, S, Masoud TM, (2022) Silicon and nitric oxide synergistically modulate the production of essential oil and rosmarinic acid in Salvia officinalis under Cu stress. Protoplasma 259:905–916. https://doi.org/10.1007/s00709-021-01708-z

    Article  CAS  PubMed  Google Scholar 

  77. Biju S, Fuentes S, Gupta D (2017) Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system. Plant Physiol Biochem 119:250–264. https://doi.org/10.1016/j.plaphy.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  78. Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  79. Gunes A, Pilbeam DJ, Inal A, Bagci EG, Coban S (2007) Influence of silicon on antioxidant mechanisms and lipid peroxidation in chickpea (Cicer arietinum L.) cultivars under drought stress. J Plant Interact 2:105–113

    Article  CAS  Google Scholar 

  80. Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34:455–472

    Article  CAS  Google Scholar 

  81. Lin B, Diao S, Li C, Fang L, Qiao S, Yu M (2004) Effect of TMS (nano structured silicon dioxide) on growth of Changbai larch seedlings. J For Res 15(2):138–140. https://doi.org/10.1007/BF02856749

    Article  CAS  Google Scholar 

  82. Zhu J, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533. https://doi.org/10.1016/j.plantsci.2004.04.020

    Article  CAS  Google Scholar 

  83. Hussain A, Rizwan M, Ali Q, Ali S (2019) Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environ Sci Pollut Res 26:7579–7588

    Article  CAS  Google Scholar 

  84. Pirooz P, Amooaghaie R, Ahadi A, Sharififar F (2021) Silicon- induced nitric oxide burst modulates systemic defensive responses of Salvia officinalis under copper toxicity. Plant Physiol Biochem 162:752–761. https://doi.org/10.1016/j.plaphy.2021.02.048

    Article  CAS  PubMed  Google Scholar 

  85. lahrani Y, Kuşvuran A, Alharby HF, Kusvuran S, Rady MM (2018) The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicol Environ Saf 154:187–96

    Article  Google Scholar 

  86. Ma D, Sun D, Wang C, Qin H, Ding H, Li Y, Guo T (2016) Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. J Plant Growth Regul 35:1–10

    Article  CAS  Google Scholar 

  87. Nazaralian S, Majd A, IrianS NF, Ghahremaninejad F, Landberg T, Greger M (2017) Comparison of silicon nanoparticles and silicate treatments in fenugreek. Plant Physiol Biochem 115:25–33

    Article  CAS  PubMed  Google Scholar 

  88. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and bio-effects of SiO2 nano particles in Bt-Transgenic cotton. J Nanobiotechnol 12:50

    Article  Google Scholar 

  90. Bhat JA, Raturi NRG, Dhiman SSP, Sanand S, Shivaraj SM, Sonah H, Deshmukh R (2021) Silicon nanoparticles (SiNPs) in sustainable agriculture: major emphasis on the practicality, efficacy and concerns. Nanoscale Advances 3:4019–4028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All authors are thankful to Seed Centre, Tamil Nadu Agricultural University, Coimbatore, India for the facilities provided to carry out the research work.

Funding

Since this research is a mandatory work of the first author, no funding assistance for conduct of this research experiment.

Author information

Authors and Affiliations

Authors

Contributions

First author (C. Vanitha) formulated and executed the research project. The second (M. Kathiravan) and third author (R.Umarani) helped for data analysis and article writing. Fourth author (K. Sathiya) and fifth author (C. Menaka) contributed for biochemical analysis of primed seeds and seedlings and sixth (M. Yuvaraj) and seventh author (Jaiby Cyriac) involved in editing and uploading of article. All authors have read and approved the research article.

Corresponding author

Correspondence to C. Vanitha.

Ethics declarations

Consent to Participate

Consent was obtained from every researcher who participated in the experiment.

Consent for Publication

The authors have given permission for this research paper to be published in the journal.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 52 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanitha, C., Kathiravan, M., Umarani, R. et al. Seed Priming with Nano Silica Alleviates Drought Stress through Regulating Antioxidant Defense System and Osmotic Adjustment in Soybean (Glycine max L.). Silicon 16, 2157–2170 (2024). https://doi.org/10.1007/s12633-023-02826-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02826-4

Keywords

Navigation