Log in

Effects of Forced Convection on the Purification of Metallurgical Silicon by Directional Solidification

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The effects of forced convection on the microstructure, macrostructure and macrosegregation of impurities in cylindrical ingots obtained by directional solidification of metallurgical grade silicon were examined. Two experiments were carried out, one without and another with the forced convection induced by a disk at the melt top rotating at 120 rpm during solidification. In the two resulting ingots, two regions exist: (1) a lower region extending from the bottom of the ingot up to 8 mm (without rotation) or 75 mm (with rotation) of columnar grains with straight boundaries, aligned in the heat extraction direction and free from intermetallic particles (except SiC); (2) an upper region of columnar grains with serrated boundaries and intermetallic particles. The lower region, which increases from 8 to 75 mm with disk rotation, is purified and displays concentrations of metallic impurities (except Al) below the recommended limits for solar grade silicon feedstock. The macro/microstructures suggest that the lower region solidified with a planar solid–liquid interface, which changed to cellular/dendritic in the upper region. A mathematical model indicates that, although forced convection increases the growth velocity and decreases the temperature gradient in the liquid, which are detrimental to the stability of a planar solid–liquid interface, convection also decreases the concentration gradient in the liquid, increasing stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The materials and datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Jacobson MZ, Delucchi MA, Bauer ZAF, Goodman SC, Chapman WE, Cameron MA, Bozonnat C, Chobadi L, Clonts HA, Enevoldsen P, Erwin JR, Fobi SN, Goldstrom OK, Hennessy EM, Liu J, Lo J, Meyer CB, Morris SB, Moy KR, O’Neill PL, Petkov I, Redfern S, Schucker R, Sontag MA, Wang J, Weiner E, Yachanin AS (2017) 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 1:108–121

    Article  Google Scholar 

  2. Andrews R, Clarson S (2015) Pathways to solar grade silicon. Silicon 7:303–305

    Article  CAS  Google Scholar 

  3. Braga AFB, Moreira SP, Zampieri PR, Bacchin JMG, Mei PR (2008) New processes for the production of solar-grade polycrystalline silicon: A review. Sol Energy Mater Sol Cells 92:418–424

    Article  CAS  Google Scholar 

  4. Chigondo F (2017) From metallurgical-grade to solar-grade silicon: An overview. Silicon 10:789–798

    Article  Google Scholar 

  5. Prakash V, Agarwal A, Mussada EK (2018) Processing methods of silicon to its ingot: a review. Silicon 11:1617–1634

    Article  Google Scholar 

  6. Ma L, Yu Z, Ma W, Qing S, Wu J (2018) Assessment and study on the impact on environment by multi-crystalline silicon preparation by metallurgical route. SILICON 11:1383–1391

    Article  Google Scholar 

  7. Nadal CC, Binetti S, Buonassisi T (2017) Purity requirements for silicon in photovoltaic applications. In: Ceccaroli B, Øvrelid E, Pizzini S (eds) Solar silicon processes: technologies, challenges, and opportunities. CRC Press - Taylor & Francis Group, New York

  8. Martorano MA, Neto JBF, Oliveira TS, Tsubaki TO (2011) Macrosegregation of impurities in directionally solidified silicon. Metall Mater Trans A 42A:1870–1886

    Article  ADS  Google Scholar 

  9. Ravishankar PS, Hunt LP, Francis RW (1984) Effective segregation coefficient of boron in silicon ingots grown by the czochralski and bridgman techniques. J Electrochem Soc 131:872–874

    Article  CAS  Google Scholar 

  10. Kvande R, Mjos O, Ryningen B (2005) Growth rate and impurity distribution in multicrystalline silicon for solar cells. Mater Sci Eng A-Struct Mater Prop Microstruct Process 413:545–549

    Article  Google Scholar 

  11. Bellmann MP, Meese EA, Arnberg L (2010) Impurity segregation in directional solidified multi-crystalline silicon. J Cryst Growth 312:3091–3095

    Article  CAS  ADS  Google Scholar 

  12. Reimann C, Trempa M, Jung T, Friedrich J, Muller G (2010) Modeling of incorporation of o, n, c and formation of related precipitates during directional solidification of silicon under consideration of variable processing parameters. J Cryst Growth 312:878–885

    Article  CAS  ADS  Google Scholar 

  13. Popescu A, Vizman D (2011) Numerical study of the influence of melt convection on the crucible dissolution rate in a silicon directional solidification process. Int J Heat Mass Transf 54:5540–5544

    Article  CAS  Google Scholar 

  14. Bellmann MP, M’Hamdi M (2013) Effect of flow pattern on the segregation of impurities in vertical bridgman growth of multi-crystalline silicon. J Cryst Growth 362:93–98

    Article  CAS  ADS  Google Scholar 

  15. Dadzis K, Ehrig J, Niemietz K, Pätzold O, Wunderwald U, Friedrich J (2011) Model experiments and numerical simulations for directional solidification of multicrystalline silicon in a traveling magnetic field. J Cryst Growth 333:7–15

    Article  CAS  ADS  Google Scholar 

  16. Dropka N, Miller W, Rehse U, Rudolph P, Bullesfeld F, Sahr U, Klein O, Reinhardt D (2011) Numerical study on improved mixing in silicon melts by double-frequency tmf. J Cryst Growth 318:275–279

    Article  CAS  ADS  Google Scholar 

  17. Dadzis K, Vizman D, Friedrich J (2013) Unsteady coupled 3d calculations of melt flow, interface shape, and species transport for directional solidification of silicon in a traveling magnetic field. J Cryst Growth 367:77–87

    Article  CAS  ADS  Google Scholar 

  18. Dumitrica S, Vizman D, Garandet JP, Popescu A (2012) Numerical studies on a type of mechanical stirring in directional solidification method of multicrystalline silicon for photovoltaic applications. J Cryst Growth 360:76–80

    Article  CAS  ADS  Google Scholar 

  19. Chatelain M, Botton V, Albaric M, Pelletier D, Cariteau B, Abdo D, Borrelli M (2018) Mechanical stirring influence on solute segregation during plane front directional solidification. Int J Therm Sci 126:252–262

    Article  Google Scholar 

  20. Øvrelid E, Juel M, Bellmann M, AgyeiTuffour B (2008) Refining of solar grade silicon by directional solidification. In: Silicon for the chemical and solar industry IX. Department of Materials Technology, Norwegian University of Science and Technology, Trondheim, pp  91–101

  21. Bellmann MP, Meese EA, Arnberg L (2011) Effect of accelerated crucible rotation on the segregation of impurities in vertical bridgman growth of multi-crystalline silicon. J Cryst Growth 318:239–243

    Article  CAS  ADS  Google Scholar 

  22. Hu D, Zhang J, Yuan S, Chen H, Zhang H, Wang C (2022) Improving performance of cast silicon ingot by forcing silicon melt convection with mechanical stirring. Silicon. https://doi.org/10.1007/s12633-022-02217-1

    Article  Google Scholar 

  23. Shang R, Qian G, Wang Z, Zhou L, Sheng Z (2022) Numerical simulation of flow field optimizing the rotating segregation purification of silicon for sog-si. Metall Mater Trans B 53:2657–2674

    Article  CAS  Google Scholar 

  24. Santara F, Delannoy Y, Autruffe A (2012) Electromagnetic stirring and retention to improve segregation in silicon for photovoltaics. J Cryst Growth 340:41–46

    Article  CAS  ADS  Google Scholar 

  25. Dantzig JA, Rappaz M (2009) Solidification. EPFL Press, Lausanne

    Book  Google Scholar 

  26. Cablea M (2014) Directional solidification of silicon under the influence of travelling magnetic field. J Cryst Growth 401:883–887

    Article  CAS  ADS  Google Scholar 

  27. Li P, Ren S, Jiang D, Li J, Zhang L, Tan Y (2016) Effect of alternating magnetic field on the removal of metal impurities in silicon ingot by directional solidification. J Cryst Growth 437:14–19

    Article  CAS  ADS  Google Scholar 

  28. Ostrogorsky AG (2021) Disk-driven flows and interface shape in vertical bridgman growth with a baffle. Prog Cryst Growth Charact Mater 67:100512

    Article  CAS  Google Scholar 

  29. Schlichting H, Gersten K (2003) Boundary-layer theory, 8th edn. Springer, New York

    Google Scholar 

  30. Sharma M, Sameen A (2021) Synopsis of vogel–escudier flow. Phys Fluids 33:064105

    Article  CAS  ADS  Google Scholar 

  31. Daily JW, Nece RE (1960) Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks. J Basic Eng 82:217–230

    Article  Google Scholar 

  32. Harmand S, Pellé J, Poncet S, Shevchuk IV (2013) Review of fluid flow and convective heat transfer within rotating disk cavities with im**ing jet. Int J Therm Sci 67:1–30

    Article  Google Scholar 

  33. Escudier MP (1984) Observations of the flow produced in a cylindrical container by a rotating endwall. Exp Fluids 2:189–196

    Article  Google Scholar 

  34. Schouveiler L, Le Gal P, Chauve MP (2001) Instabilities of the flow between a rotating and a stationary disk. J Fluid Mech 443:329–350

    Article  ADS  Google Scholar 

  35. Cooper P, Reshotko ELI (1975) Turbulent flow between a rotating disk and a parallel wall. AIAA J 13:573–578

    Article  ADS  Google Scholar 

  36. Launder B, Poncet S, Serre E (2009) Laminar, transitional, and turbulent flows in rotor-stator cavities. Annu Rev Fluid Mech 42:229–248

    Article  ADS  Google Scholar 

  37. Randriamampianina A, Elena L, Fontaine JP, Schiestel R (1997) Numerical prediction of laminar, transitional and turbulent flows in shrouded rotor-stator systems. Phys Fluids 9:1696–1713

    Article  CAS  ADS  Google Scholar 

  38. Peres N, Poncet S, Serre E (2012) A 3d pseudospectral method for cylindrical coordinates. Application to the simulations of rotating cavity flows. J Comput Phys 231:6290–6305

    Article  MathSciNet  ADS  Google Scholar 

  39. Yim E, Chomaz JM, Martinand D, Serre E (2018) Transition to turbulence in the rotating disk boundary layer of a rotor–stator cavity. J Fluid Mech 848:631–647

    Article  MathSciNet  CAS  ADS  Google Scholar 

  40. Lugt HJ, Haussling HJ (1982) Axisymmetric vortex breakdown in rotating fluid within a container. J Appl Mech 49:921–923

    Article  ADS  Google Scholar 

  41. Bertelà M, Gori F (1982) Laminar flow in a cylindrical container with a rotating cover. J Fluids Eng 104:31–39

    Article  Google Scholar 

  42. Gori F (1985) Is laminar flow in a cylindrical container with a rotating cover a batchelor or stewartson-type solution? J Fluids Eng 107:436–437

    Article  Google Scholar 

  43. Serre E, Crespo Del Arco E, Bontoux P (2001) Annular and spiral patterns in flows between rotating and stationary discs. J Fluid Mech 434:65–100

    Article  MathSciNet  CAS  ADS  Google Scholar 

  44. Savaş Ö (1987) Stability of bödewadt flow. J Fluid Mech 183:77–94

    Article  ADS  Google Scholar 

  45. Ristorcelli JR, Lumley JL (1992) Instabilities, transition and turbulence in the czochralski crystal melt. J Cryst Growth 116:447–460

    Article  ADS  Google Scholar 

  46. Currie LA (1995) Nomenclature in evaluation of analytical methods including detection and quantification capabilities (iupac recommendations 1995). Pure Appl Chem 67:1699–1723

    Article  CAS  Google Scholar 

  47. Rappaz M (1989) Modeling of microstructure formation in solidification processes. Int Mater Rev 34:93–123

    Article  CAS  Google Scholar 

  48. Clyne TW (1982) The use of heat-flow modeling to explore solidification phenomena. Metall Trans B 13:471–478

    Article  Google Scholar 

  49. Heitz WL, Westwater JW (1970) Extension of the numerical method for melting and freezing problems. Int J Heat Mass Transf 13:1371–1375

    Article  CAS  Google Scholar 

  50. Caldwell TW, Campagna AJ, Flemings MC, Mehrabian R (1977) Refinement of dendrite arm spacings in aluminum ingots through heat-flow control. Metall Trans B 8:261–270

    Article  Google Scholar 

  51. Voller V, Cross M (1981) Accurate solutions of moving boundary-problems using the enthalpy method. Int J Heat Mass Transf 24:545–556

    Article  Google Scholar 

  52. Mills KC, Courtney L (2000) Thermophysical properties of silicon. Isij. International 40:S130–S138

    CAS  Google Scholar 

  53. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Pub. Corp, New York

    Google Scholar 

  54. Yue AS, Clark JB (1960) Directional freezing of magnesium alloys. Trans AIME 218:55–58

    CAS  Google Scholar 

  55. Dean FV, Hellawell A, Kerr JR (1962) Factors affecting solute distribution during normal freezing of lead-antimony alloys. J Inst Metals 90:234–237

    CAS  Google Scholar 

  56. Martorano MA, Neto JBF, Oliveira TS, Tsubaki TO (2011) Refining of metallurgical silicon by directional solidification. Mater Sci Eng B 176:217–226

    Article  CAS  Google Scholar 

  57. Tiller WA, Jackson KA, Rutter JW, Chalmers B (1953) The redistribution of solute atoms during the solidification of metals. Acta Metall 1:428–437

    Article  CAS  Google Scholar 

  58. Mullins WW, Sekerka RF (1964) Stability of planar interface during solidification of dilute binary alloy. J Appl Phys 35:444–451

    Article  ADS  Google Scholar 

  59. Hurle DTJ (1961) Constitutional supercooling during crystal growth from stirred melts – 1. Theoretical. Solid-State Electron 3:37–44

    Article  CAS  ADS  Google Scholar 

  60. Coriell SR, Hurle DTJ, Sekerka RF (1976) Interface stability during crystal-growth - effect of stirring. J Cryst Growth 32:1–7

    Article  CAS  ADS  Google Scholar 

  61. Burton JA, Prim RC, Slichter WP (1953) The distribution of solute in crystals grown from the melt – 1. Theoretical. J Chem Phys 21:1987–1991

    Article  CAS  ADS  Google Scholar 

  62. Coriell SR, Boisvert RF, Mcfadden GB, Brush LN, Favier JJ (1994) Morphological stability of a binary alloy during directional solidification - initial transient. J Cryst Growth 140:139–147

    Article  CAS  ADS  Google Scholar 

  63. Nagashio K, Kuribayashi K (2005) Growth mechanism of twin-related and twin-free facet si dendrites. Acta Mater 53:3021–3029

    Article  CAS  ADS  Google Scholar 

  64. Pfann WG (1952) Principles of zone-melting. J Metals 4:747–753

    CAS  Google Scholar 

  65. Ostrogorsky AG (2012) Effective convection coefficient for porous interface and solute segregation. J Cryst Growth 348:97–105

    Article  CAS  ADS  Google Scholar 

  66. Vogelaar GC (1996) Analysis of intermetallic phases in silicon ingots of different thickness. In: Øye HA, Rong HM, Ceccaroli B, Nygaard L, Tuset JK (eds) Silicon for the Chemical Industry III. Sandefjord, Norway, pp 95–112

    Google Scholar 

  67. Ribeiro TR, Ferreira Neto JB, Martorano MA (2014) Effects of solidification rate and settling time of sic particles on the macrosegregation of carbon in silicon ingots. Metall Mater Trans E 1:286–291

    CAS  Google Scholar 

  68. Ren SQ, Li PT, Jiang DC, Tan Y, Li JY, Zhang L (2016) Removal of metal impurities by controlling columnar grain growth during directional solidification process. Appl Therm Eng 106:875–880

    Article  CAS  Google Scholar 

  69. Yuge N, Hanazawa K, Kato Y (2004) Removal of metal impurities in molten silicon by directional solidification with electron beam heating. Mater Trans 45:850–857

    Article  CAS  Google Scholar 

  70. Bathey BR, Cretella MC (1982) Solar-grade silicon. J Mater Sci 17:3077–3096

    Article  CAS  ADS  Google Scholar 

  71. Kurz W, Fisher DJ (1989) Fundamentals of solidification, 3rd edn. Trans Tech Publications, Aedermannsdorf

    Google Scholar 

  72. Ren SQ, Li PT, Jiang DC, Shi S, Li JY, Wen ST, Tan Y (2015) Removal of cu, mn and na in multicrystalline silicon by directional solidification under low vacuum condition. Vacuum 115:108–112

    Article  CAS  ADS  Google Scholar 

  73. Ren S, Tan Y, Jiang D, Li P, Li J (2018) Effect of temperature gradient on the diffusion layer thickness of impurities during directional solidification process. Mater Sci Semicond Process 74:102–108

    Article  CAS  Google Scholar 

  74. Davis SH (1993) Effects of flow on morphological stability. In: Hurle DTJ (ed) Handbook of crystal growth, vol 1 - fundamentals. Elsevier, New York

  75. Kodera H (1963) Diffusion coefficients of impurities in silicon melts. Jpn J Appl Phys 2:212–219

    Article  CAS  ADS  Google Scholar 

  76. Ostrogorsky AG (2013) Combined-convection segregation coefficient and related nusselt numbers. J Cryst Growth 380:43–50

    Article  CAS  ADS  Google Scholar 

  77. Yuan ZX, Saniei N, Yan XT (2003) Turbulent heat transfer on the stationary disk in a rotor–stator system. Int J Heat Mass Transf 46:2207–2218

    Article  Google Scholar 

  78. Howey DA, Holmes AS, Pullen KR (2010) Radially resolved measurement of stator heat transfer in a rotor–stator disc system. Int J Heat Mass Transf 53:491–501

    Article  Google Scholar 

  79. Rasekh A, Sergeant P, Vierendeels J (2015) Convective heat transfer prediction in disk-type electrical machines. Appl Therm Eng 91:778–790

    Article  Google Scholar 

  80. Barlow JO, Stefanescu DM (1998) Computer-aided cooling curve analysis revisited. Trans Am Foundrymen’s Soc 105:349–354

    Google Scholar 

  81. Wu LK, Li QL, Xu B, Liu W (2016) Calculation of solid-liquid interfacial free energy of silicon based on classical nucleation theory. J Mater Res 31:3649–3656

    Article  CAS  ADS  Google Scholar 

  82. Safarian J, Kolbeinsen L, Tangstad M (2011) Liquidus of silicon binary systems. Metall Mater Trans B 42:852–874

    Article  CAS  Google Scholar 

  83. Beckermann C (2002) Modelling of macrosegregation: Applications and future needs. Int Mater Rev 47:243–261

    Article  CAS  Google Scholar 

  84. Hebditch DJ, Hunt JD (1974) Observations of ingot macrosegregation on model systems. Metall Trans 5:1557–1564

    Article  CAS  Google Scholar 

  85. Flemings MC (1976) Principles of control of soundness and homogeneity of large ingots. Scand J Metall 5:1–15

    CAS  Google Scholar 

  86. Kuroda E, Saitoh T (1979) Growth and characterization of polycrystalline silicon ingots from metallurgical grade source material. J Cryst Growth 47:251–260

    Article  CAS  ADS  Google Scholar 

  87. Coriell SR, Mcfadden GB, Boisvert RF, Sekerka RF (1984) Effect of a forced couette-flow on coupled convective and morphological instabilities during unidirectional solidification. J Cryst Growth 69:15–22

    Article  CAS  ADS  Google Scholar 

  88. Brattkus K, Davis SH (1988) Flow induced morphological instabilities - stagnation-point flows. J Cryst Growth 89:423–427

    Article  ADS  Google Scholar 

  89. Brattkus K, Davis SH (1988) Flow-induced morphological instabilities - the rotating-disk. J Cryst Growth 87:385–396

    Article  CAS  ADS  Google Scholar 

  90. Wilcox WR (1969) Validity of stagnant film approximation for mass transfer in crystal growth and dissolution. Mater Res Bull 4:265–274

    Article  CAS  Google Scholar 

  91. Wilson LO (1978) Interpreting a quantity in burton, prim and slichter equation as a diffusion boundary-layer thickness. J Cryst Growth 44:247–250

    Article  CAS  ADS  Google Scholar 

  92. Brown RA (1988) Theory of transport processes in single crystal growth from the melt. AIChE J 34:881–911

    Article  CAS  ADS  Google Scholar 

  93. Glicksman ME (2011) Principles of solidification : An introduction to modern casting and crystal growth concepts. Springer Verlag, New York

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and FIPT (Fundação de Apoio ao Instituto de Pesquisas Tecnológicas) grants provided to D.P. Nascimento and the support to this work by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), grant 311206/2014-0, and FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) with grant 2017/22361-6.

Funding

This work was supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), FIPT (Fundação de Apoio ao Instituto de Pesquisas Tecnológicas), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) (grant 311206/2014–0), FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) (grant 2017/22361–6).

Author information

Authors and Affiliations

Authors

Contributions

(a) Denir P. Nascimento: Data curation; Formal analysis; Investigation; Methodology; Software; Visualization; Writing original draft, review & editing. (b) Marcelo A. Martorano: Conceptualization; Data curation; Formal analysis; Funding acquisition; Methodology; Project administration; Resources; Software; Supervision; Visualization; Writing original draft, review & editing. (c) Moyses L. Lima: Conceptualization; Funding acquisition; Methodology; Resources; Writing—review & editing. (d) João B. Ferreira Neto: Conceptualization; Funding acquisition; Methodology; Project administration; Resources; Supervision; Writing—review & editing. (e) Angelo F. Padilha: Funding acquisition; Methodology; Writing—review & editing.

Corresponding author

Correspondence to Marcelo A. Martorano.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publications

Publishers have no restrictions to publish the contents of this manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento, D.P., Martorano, M.A., Lima, M.L. et al. Effects of Forced Convection on the Purification of Metallurgical Silicon by Directional Solidification. Silicon 16, 1125–1145 (2024). https://doi.org/10.1007/s12633-023-02742-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02742-7

Keywords

Navigation