Log in

One-step Preparation of Silicate Coatings on AZ91D Magnesium Alloy Surface for Boosting its Corrosion Resistance

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The silicate composite coating with corrosion resistance was prepared by one-step hydrothermal method on the surface of magnesium alloys. The effect of different time and temperature on the corrosion resistance of silicate coatings was also investigated. Electrochemical tests were carried out on AZ91D and coated samples in 3.5 wt% NaCl solution. The microscopic morphology and composition of the coated samples as well as the anti-corrosion mechanism were investigated through the tests. The results showed that the cluster structure on the surface of the coating effectively prevented the electrolyte from entering the surface of the magnesium alloy, and the corrosion current of the coating decreased by four orders of magnitude compared with that of the magnesium alloy substrate, which greatly improved the corrosion resistance of the magnesium alloy. This provides a new approach to inorganic clay in metal corrosion prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Heakal FET, Shoeib MA, Maanoum MA (2017) Optimizing parameters affecting Electroless Ni-P Coatings on AZ91D Magnesium Alloy as Corrosion Protection barriers. Prot Met Phys Chem Surf 53(1):177–187

    Article  CAS  Google Scholar 

  2. Zhao ZY et al (2018) Microstructural evolution and mechanical strengthening mechanism of Mg-3Sn-1Mn-1La alloy after heat treatments. Mater Sci Eng a-Structural Mater Prop Microstruct Process 734:200–209

    Article  CAS  ADS  Google Scholar 

  3. Cui LY et al (2018) In vitro corrosion resistance of a layer-by-layer assembled DNA coating on magnesium alloy. Appl Surf Sci 457:49–58

    Article  CAS  ADS  Google Scholar 

  4. Heakal FET, Bakry AM (2018) Serum albumin can influence magnesium alloy degradation in simulated blood plasma for cardiovascular stenting. Mater Chem Phys 220:35–49

    Article  Google Scholar 

  5. Li LY et al (2018) Advances in functionalized polymer coatings on biodegradable magnesium alloys - a review. Acta Biomater 79:23–36

    Article  CAS  PubMed  Google Scholar 

  6. Song YW et al (2010) Effect of second phases on the corrosion behavior of wrought Mg-Zn-Y-Zr alloy. Corros Sci 52(5):1830–1837

    Article  CAS  Google Scholar 

  7. Cui LY et al (2017) Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31. Corros Sci 118:84–95

    Article  CAS  ADS  Google Scholar 

  8. Zeng RC et al (2008) Progress and challenge for magnesium alloys as biomaterials. Adv Eng Mater 10(8):B3–B14

    Article  CAS  Google Scholar 

  9. Thomas S et al (2015) Corrosion mechanism and hydrogen evolution on mg. Curr Opin Solid State Mater Sci 19(2):85–94

    Article  CAS  ADS  Google Scholar 

  10. Ostrowski N et al (2013) Corrosion protection and improved cytocompatibility of biodegradable polymeric layer-by-layer coatings on AZ31 magnesium alloys. Acta Biomater 9(10):8704–8713

    Article  CAS  PubMed  Google Scholar 

  11. Oksa M et al (2011) Optimization and characterization of high velocity oxy-fuel sprayed Coatings: techniques, materials, and applications. Coatings 1(1):17–52

    Article  Google Scholar 

  12. Abdal-hay A et al (2014) Enhanced biocorrosion resistance of surface modified magnesium alloys using inorganic/organic composite layer for biomedical applications. Ceram Int 40(1):2237–2247

    Article  CAS  Google Scholar 

  13. Liu WL, Hsieh SH, Chen WJ (2007) Preparation of Sn films deposited on carbon nanotubes. Appl Surf Sci 253(20):8356–8359

    Article  CAS  ADS  Google Scholar 

  14. Kannan MB, Liyanaarachchi S (2013) Hybrid coating on a magnesium alloy for minimizing the localized degradation for load-bearing biodegradable mini-implant applications. Mater Chem Phys 142(1):350–354

    Article  CAS  Google Scholar 

  15. She ZX et al (2013) Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability. Chem Eng J 228:415–424

    Article  CAS  Google Scholar 

  16. Chen J et al (2013) Modifications of the hydrotalcite film on AZ31 mg alloy by phytic acid: the effects on morphology, composition and corrosion resistance. Corros Sci 74:130–138

    Article  CAS  Google Scholar 

  17. Chen XB et al (2012) Corrosion-resistant electrochemical platings on magnesium alloys: a state-of-the-art review. Corrosion 68(6):518–535

    Article  CAS  Google Scholar 

  18. Heakal FET, Maanoum MA (2016) Role of some plating parameters in the properties of Ni-P/Al2O3 Nanocomposite Coatings on mg alloy. Int J Electrochem Sci 11(8):7198–7215

    Article  CAS  Google Scholar 

  19. Lu XY et al (2017) Improvement of protection performance of Mg-rich epoxy coating on AZ91D magnesium alloy by DC anodic oxidation. Prog Org Coat 104:188–198

    Article  CAS  Google Scholar 

  20. Ivanou DK et al (2013) Plasma anodized ZE41 magnesium alloy sealed with hybrid epoxy-silane coating. Corros Sci 73:300–308

    Article  CAS  Google Scholar 

  21. Hua L, Sun JP, Wu GS (2022) Enhancing corrosion resistance of hydrothermally-treated magnesium-aluminum alloys by preprocessed metallurgical microstructure. Thin Solid Films 752:139247. https://doi.org/10.1016/j.tsf.2022.139247

  22. Calabrese L (2019) Anticorrosion behavior of zeolite coatings obtained by in situ crystallization: a critical review. Materials 12(1):Article 1. https://doi.org/10.3390/ma12010059

  23. Bahri H et al (2015) Effect of silica ratio on the corrosion behavior of nano-silica potassium silicate coatings on aluminum alloy 2024. J Mater Eng Perform 24(2):839–847

    Article  CAS  Google Scholar 

  24. Gu SQ et al (2019) Clay mineral adsorbents for heavy metal removal from wastewater: a review. Environ Chem Lett 17(2):629–654

    Article  CAS  Google Scholar 

  25. Zhang YJ et al (2013) High corrosion protection of a polyaniline/organophilic montmorillonite coating for magnesium alloys. Prog Org Coat 76(5):804–811

    Article  CAS  Google Scholar 

  26. Zamanizadeh HR et al (2015) Investigation of the corrosion protection behavior of natural montmorillonite clay/bitumen nanocomposite coatings. Prog Org Coat 78:256–260

    Article  CAS  Google Scholar 

  27. Jokar M et al (2016) Corrosion and bioactivity evaluation of nanocomposite PCL-forsterite coating applied on 316L stainless steel. Surf Coat Technol 307:324–331

    Article  CAS  Google Scholar 

  28. Wang J et al (2010) Fabrication of hydrophobic surface with hierarchical structure on mg alloy and its corrosion resistance. Electrochim Acta 55(22):6897–6906

    Article  CAS  Google Scholar 

  29. Zhu JY, Jia CX (2022) Preparation of corrosion-resistant hydrophobic composite films on magnesium alloy. Surf Eng 38(7–9):713–724

    Article  CAS  Google Scholar 

  30. Li WD (2022) Effects of ca and ag addition and heat treatment on the corrosion behavior of Mg-7Sn alloys in 3.5 wt.% NaCl solution. Surf Interface Anal 54(6):631–641

    Article  CAS  Google Scholar 

  31. Zhu JY, Jia CX, Duan YZ (2023) Study on corrosion resistance of alkali-heat modified magnesium alloy surface. Met Mater Int 29(6):1638–1651

    Article  CAS  Google Scholar 

  32. Yang CW et al (2017) Hydrothermal treatment and butylphosphonic acid derived self-assembled monolayers for improving the surface chemistry and corrosion resistance of AZ61 magnesium alloy. Sci Rep 7(1):Article 1. https://doi.org/10.1038/s41598-017-17199-z

  33. Jeong H, Yoo Y (2015) Synthesis and characterization of thin films on magnesium alloy using a hydrothermal method. Surf Coat Technol 284:26–30

    Article  CAS  Google Scholar 

  34. Morgan WE, Wazer JRV, Stec WJ (1973) Inner-orbital photoelectron spectroscopy of the alkali metal halides, perchlorates, phosphates, and pyrophosphate. J Am Chem Soc 95(3):751–755

    Article  CAS  Google Scholar 

  35. Thomas TD et al (1986) Valence electronic structure of AuZn and AuMg alloys derived from a new way of analyzing Auger-parameter shifts. Phys Rev B 33(8):5406–5413. https://doi.org/10.1103/physrevb.33.5406

  36. Della Rovere CA et al (2012) Characterization of passive films on shape memory stainless steels. Corros Sci 57:154–161

    Article  CAS  Google Scholar 

  37. Robin R, Miserque F, Spagnol V (2008) Correlation between composition of passive layer and corrosion behavior of high Si-containing austenitic stainless steels in nitric acid. J Nucl Mater 375(1):65–71

    Article  CAS  ADS  Google Scholar 

  38. Okada K, Kameshima Y, Yasumori A (1998) Chemical shifts of silicon X-ray photoelectron spectra by polymerization structures of silicates. J Am Ceram Soc 81(7):1970–1972

    Article  CAS  Google Scholar 

  39. Li J et al (2016) Facile fabrication of superhydrophobic silica coatings with excellent corrosion resistance and liquid marbles. J Solgel Sci Technol 80(1):208–214

    Article  MathSciNet  CAS  Google Scholar 

  40. Heakal FE et al (2012) Investigation on the corrosion and hydrogen evolution for AZ91D magnesium alloy in single and anion-containing oxalate solutions. Int J Hydrog Energy 37(1):84–94

    Article  Google Scholar 

  41. Tian HL, Su Z, Zhang YH (2017) Synthesis and electrochemical properties of spinel LiCrTiO4 and its application in LiFePO4/LiCrTiO4 full cells. Int J Electrochem Sci 12(8):6980–6989

    Article  CAS  Google Scholar 

  42. Wang B et al (2022) Study on anti-corrosion performance of silica fume modified magnesium potassium phosphate cement-based coating on steel. Case Stud Constr Mater 17:e01467. https://doi.org/10.1016/j.cscm.2022.e01467

  43. Amrollahi S et al (2019) Synthesis of polyaniline-modified graphene oxide for obtaining a high performance epoxy nanocomposite film with excellent UV blocking/anti-oxidant/anti-corrosion capabilities. Compos Part B-Eng 173:106804. https://doi.org/10.1016/j.compositesb.2019.05.015

  44. Heakal FET, Fekry AM, Fatayerji MZ (2009) Influence of halides on the dissolution and passivation behavior of AZ91D magnesium alloy in aqueous solutions. Electrochim Acta 54(5):1545–1557

    Article  Google Scholar 

  45. Diaz-Ramos M et al (2023) Electrochemical Impedance Spectroscopy (EIS) of parylene coated magnesium stents in organic solvent to study early corrosion control. Corros Sci 213:110932. https://doi.org/10.1016/j.corsci.2022.110932

  46. Zhao DW et al (2017) Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective. Biomaterials 112:287–302

    Article  CAS  PubMed  Google Scholar 

  47. Esen Z, Butev E, Karakas MS (2016) A comparative study on biodegradation and mechanical properties of pressureless infiltrated Ti/Ti6Al4V-Mg composites. J Mech Behav Biomed Mater 63:273–286

    Article  CAS  PubMed  Google Scholar 

  48. Wang FS et al (2020) A method to select the optimal equivalent electrical circuit applied to study corrosion system of composite coating on magnesium alloy. Phys Lett A 384(24):126452. https://doi.org/10.1016/j.physleta.2020.126452

  49. Zeng LY et al (2010) Preparation and characterization of a double-layer coating on magnesium alloy AZ91D. Electrochim Acta 55(9):3376–3383

    Article  CAS  Google Scholar 

  50. Heakal FE, Shehata OS, Tantawy NS (2014) Degradation behaviour of AZ80E magnesium alloy exposed to phosphate buffer saline medium. Corros Sci 86:285–294

    Article  Google Scholar 

  51. Liu LJ, Schlesinger M (2009) Corrosion of magnesium and its alloys. Corros Sci 51(8):1733–1737

    Article  CAS  Google Scholar 

  52. Bender S et al (2012) A new theory for the negative difference effect in magnesium corrosion. Mater Corrosion-Werkstoffe Und Korrosion 63(8):707–712

    Article  CAS  Google Scholar 

  53. Baril G et al (2007) An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions. J Electrochem Soc 154(2):C108–C113

    Article  CAS  Google Scholar 

  54. Heakal FET et al (2022) Influence of anodization and bovine serum albumin on the degradation of new AXJ-magnesium alloy system as a bioabsorbable orthopedic implant. J Electroanal Chem 918:116458. https://doi.org/10.1016/j.jelechem.2022.116458

  55. Cai ZP et al (2009) Study on anodic oxidation of magnesium in 6 M KOH solution by alternative current impedance. Int J Hydrog Energy 34(1):467–472

    Article  CAS  Google Scholar 

  56. Zhu TT et al (2019) Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites. Appl Clay Sci 169:48–66

    Article  CAS  ADS  Google Scholar 

  57. Hayajneh MT, Almomani MA, Al HB, Hmoud (2019) Corrosion evaluation of nanocomposite gelatin-forsterite coating applied on AISI 316L stainless steel. Mater Res Express 6(11):116431. https://doi.org/10.1088/2053-1591/ab49c3

  58. Li CB et al (2021) Study on the synergistic corrosion inhibition effect between Sodium Silicate and Triethanolamine for 45 Steel Corrosion in 3.5% NaCl solution. Int J Electrochem Sci 16(10):211034. https://doi.org/10.20964/2021.10.59

  59. Jamali F, Danaee I, Zaarei D (2015) Effect of nano-silica on the corrosion behavior of silicate conversion coatings on hot-dip galvanized steel. Mater Corrosion-Werkstoffe Und Korrosion 66(5):459–464

    Article  CAS  Google Scholar 

  60. Yu LT et al (2022) Simultaneously improving the mechanical property and corrosion resistance of extruded biomedical Mg-3Zn alloy by forming in-situ MgO. J Mater Res Technol-Jmr&T 18: 2977–2992

  61. Calabrese L et al (2014) Electrochemical behavior of hydrophobic silane-zeolite coatings for corrosion protection of aluminum substrate. J Coat Technol Res 11(6):883–898

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Guangxi (Grant 2023GXNSFAA026371).

Author information

Authors and Affiliations

Authors

Contributions

M.J wrote the main manuscript text, J.W provide the investigation, and J.Z provide the concept. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jiyuan Zhu.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Informed consent for publication of this paper was obtained from all authors.

Consent for Publication

Informed consent was obtained from all the authors for publication of this report and any accompanying images.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Wu, J. & Zhu, J. One-step Preparation of Silicate Coatings on AZ91D Magnesium Alloy Surface for Boosting its Corrosion Resistance. Silicon 16, 1147–1159 (2024). https://doi.org/10.1007/s12633-023-02736-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02736-5

Keywords

Navigation