Log in

Precise Measurement of Qn Species Distributions in Modified Silicate Glass Using Phase-Adjusted Spinning Sideband NMR Experiment

  • Brief Report
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Quantification of the distribution of Q(n) species, representing the number of bridging oxygens (n) around a silicate tetrahedra in potassium disilicate glass, is achieved using the two-dimensional Phase-Adjusted Spinning Sideband (2D PASS) sequence. Furthermore, we compare the relative concentrations of each Q(n) species obtained through the PASS method with a previous study utilizing the Magic Angle Flip** (MAF) technique on the same glass composition. While MAF has been employed in prior research to enhance the precision of Q(n) species measurements in glasses, it necessitates a specialized probe capable of reorienting the rotor axis. In contrast, alternatives like MAT or 2D PASS are more appealing as they can be implemented using a conventional MAS probe. In this study, we demonstrate that the PASS experiment provides comparable accuracy to MAF while significantly reducing the required time.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410:259–267

    Article  CAS  PubMed  Google Scholar 

  2. Pinal R (2008) Entropy of Mixing and the Glass Transition of Amorphous Mixtures. Entropy 10:207–223

    Article  CAS  Google Scholar 

  3. Kawasaki T, Araki T, Tanaka H (2007) Correlation Between Dynamic Heterogeneity and Medium-Range Prder in Two-Dimensional Glass-Forming Liquids. Phys Rev Lett 99:215701

    Article  PubMed  Google Scholar 

  4. Lee SK, Deschamps M, Hiet J, Massiot D, Park SY (2009) Connectivity and Proximity between Quadrupolar Nuclides in Oxide Glasses: Insights from through-Bond and through-Space Correlations in Solid-State NMR. J Phys Chem B 113:5162–5167

    Article  CAS  PubMed  Google Scholar 

  5. Hiet J, Deschamps M, Pellerin N, Fayon F, Massiot D (2009) Probing chemical disorder in glasses using silicon-29 NMR spectral editing. Phys Chem Chem Phys 11:6935–6940

    Article  CAS  PubMed  Google Scholar 

  6. Sen S, Youngman RE (2003) NMR study of Q-speciation and connectivity in K2O–SiO2 glasses with high silica content. J Non-Cryst Solids 331:100–107

    Article  CAS  Google Scholar 

  7. Lee SK (2004) Structure of Solicate Glasses and Melts at High Pressure: Quantum Chemical Calculations and Solid-State NMR. J Phys Chem B 108(19):5889–5900

    Article  CAS  Google Scholar 

  8. Smith KA, Kirkpatrick RJ, Oldfield E, Henderson DM (1983) High-resolution Si-29 nuclear-magnetic-resonance spectroscopic study of rock-forming silicates. Chem Phys Lett 68:1206–1215

    CAS  Google Scholar 

  9. Mishra RK, Shweta, Sen P, Dey KK, Ghosh M, Gautam C (2023) Physical, Structural, and Optical Properties of ZrO2 Reinforced(100‑x–y)[SrTiO3]‑x[2B2O3.SiO2]‑y[ZrO2] Glasses. Silicon 1–19. https://doi.org/10.1007/s12633-023-02523-2

  10. Kumar BS, Choudhary MB, Bera AK, Yusuf SM, Ghosh M, Pahari B (2022) High Na+ conducting Na3Zr2Si2PO12/Na2Si2O5 composites as solid electrolytes for Na+ batteries. J Am Ceram Soc 105(7):5011–5019

    Article  Google Scholar 

  11. Shweta C, Gautam KK, Dey M, Ghosh R, Prakash K, Sharma D (2021) Singh, Influence of carbon nanotubes reinforcement on the structural featureand bioactivity of SiO2–Al2O3–MgO–K2CO3–CaO–MgF2 bio glass. Appl Phys A Mater Sci Process 127:545–567

    Article  CAS  Google Scholar 

  12. Gautam C, Madheshiy A, Singh AK, Dey KK, Ghosh M (2020) Synthesis, optical and solid NMR studies of strontium titanate borosilicate glasses doped with TeO2. Results Phys 16:102914

    Article  Google Scholar 

  13. Madheshiya A, Dey KK, Ghosh M, Singh J, Gautam C (2019) Synthesis, structural, optical and solid state NMR study of lead bismuth titanate borosilicate glasses. J Non-Cryst Solids 503:288–296

    Article  Google Scholar 

  14. Das S, Madheshiya A, Ghosh M, Dey KK, Goutam S, Singh J, Goutam C (2019) Structural, optical and NMR study of V2O5 doped lead calcium titanate borosilicate glasses. J Phys Chem Solids 126:7–26

    Article  Google Scholar 

  15. Ackerson MR, Cody GD, Mysen BO (2020) 29Si solid state NMR and Ti K-edge XAFS pre-edge spectroscopy reveal complex behavior of Ti in silicate melts. Prog Earth Planet Sci 7:14–25

    Article  PubMed  PubMed Central  Google Scholar 

  16. Larson C, Doerr J, Affatigato M, Feller S, Holland D, Smith ME (2006) A 29Si MAS NMR study of silicate glasses with a high lithium content. J Phys: Condens Matter 18:11323

    CAS  Google Scholar 

  17. Luan Z, Zhao D, He H, Klinowski J, Kevan L (1998) Tubular aluminophosphate mesoporous materials containing framework silicon, vanadium and manganese. Stud Surf Sci Catal 117:103–110

    Article  CAS  Google Scholar 

  18. Stebbins JF (1987) Identification of multiple structural species in silicate glasses by 29Si NMR. Nature 330:465

    Article  CAS  PubMed  Google Scholar 

  19. Herzfeld J, Berger AE (1980) Sideband intensities in NMR spectra of samples spinning at the magic angle. J Chem Phys 73:6021

    Article  CAS  Google Scholar 

  20. Bax AD, Szeverenyi NM, Maciel GE (1983) Correlation of isotropic shifts and chemical shift anisotropies by two dimensional Fourier-transform magic-angle hop** NMR spectroscopy. J Magn Reson 52:147

    CAS  Google Scholar 

  21. Grandinetti PJ, Baltisberger JH, Llor A, Lee YK, Werner U, Eastman MA, Pines A (1993) Pure absorption-mode lineshapes and sensitivity in two-dimensional dynamic angle spinning NMR. J Magn Reson A 103:72–81

    Article  CAS  Google Scholar 

  22. Hu JZ, Alderman DW, Ye CH, Pugmire RJ, Grant DM (1993) An isotropic chemical shift-chemical shift anisotropy magic-angle slow-spinning 2D NMR experiment. J Magn Reson A 105(1):82–87

    Article  CAS  Google Scholar 

  23. Gan ZH (1992) High-resolution chemical-shift and chemical-shift anisotropy correlation in solids using slow magic-angle spinning. J Am Chem Soc 114(21):8307–8309

    Article  CAS  Google Scholar 

  24. Dixon WT (1800) Spinning-sideband-free and spinning-sideband only NMR spectra in spinning samples. J Chem Phys 1982:77

    Google Scholar 

  25. Antzutkin ON, Shekar SC, Levitt MH (1995) Two-dimensional sideband separation in magic-angle spinning NMR. J Magn Reson A 115:7–19

    Article  CAS  Google Scholar 

  26. Bhowal R, Balaraman A, Ghosh M, Dutta S, Dey KK, Chopra D (2021) Probing Atomistic Behavior to Unravel Dielectric Phenomena in Charge Transfer Cocrystals. J Am Chem Soc 143:1024–1037

    Article  CAS  PubMed  Google Scholar 

  27. Mandal I, Keshri SR, Lodhi L, Dey KK, Ghosh M, Ghosh A, Allu AR (2022) Correlation of structure and ionic-conductivity in phosphate glass using MAS-NMR and impedance spectroscopy: Influence of sodium salt. Phys Rev Mater 6:115403

    Article  CAS  Google Scholar 

  28. Ironside MS, Stein RS, Duer MJ (2007) Using chemical shift anisotropy toresolve isotropic signals in solid-state NMR. J Magn Reson 188:49–55

    Article  CAS  PubMed  Google Scholar 

  29. Ironside MS, Reid DG, Duer MJ (2008) Correlating sideband patterns with powder patterns for accurate determination of chemical shift parameters in solid-state NMR. Magn Reson Chem 46:913–917

    Article  CAS  PubMed  Google Scholar 

  30. Vogt FG, Gibson JM, Aurentz DJ, Mueller KT, Benesi AJ (2000) Multiple-rotor-cycle 2D PASS experiments with applications to 207Pb spectroscopy. J Magn Reson 143:153–160

    Article  CAS  PubMed  Google Scholar 

  31. Song F, Antzutkin ON, Rupprecht A, Levitt MH (1996) Orderresolved sideband separation in magic-angle-spinning nmr. 31P NMR of oriented DNA fibers. Chem Phys Lett 253:349–354

    Article  CAS  Google Scholar 

  32. Wei Y, Lee D, Ramamoorthy A (2001) Solid-state 13C NMR chemical shift anisotropy tensors of polypeptides. J Am Chem Soc 123:6118–6126

    Article  CAS  PubMed  Google Scholar 

  33. Fayon F, Bessada C, Douy A, Massiot D (1999) Chemical bonding of lead in glasses through isotropic vs anisotropic correlation: Pass shifted echo. J Magn Reson 137:116–121

    Article  CAS  PubMed  Google Scholar 

  34. Cherry B, Zwanziger JW, Aitken BG (2002) The structure of GeS2-P2S5 glasses. J Phys Chem B 106:11093–11101

    Article  CAS  Google Scholar 

  35. Davis M, Kaseman D, Parvani S, Sanders K, Grandinetti P, Florian P, Massiot D (2010) Q(n)-species distribution in K2O 2SiO2 by 29Si Magic Angle Flip** NMR. J Phys Chem A 114(17):5503–5508

    Article  CAS  PubMed  Google Scholar 

  36. Haeberlen U (1976) In Advances in Magnetic Resonance; Suppl. 1; J. S. Waugh, Ed.; Academic Press: New York

  37. Mehring M (1983) Principles of High Resolution NMR in Solids, 2nd edn. Springer Verlag, Berlin

    Book  Google Scholar 

  38. Spiess HW (1978) In NMR Basic Principles and Progress; P. Diehl, E. Fluck, R. Kosfeld, Eds.; Springer Verlag, Berlin, Vol. 15

  39. Ivchenko N, Hughes CE, Levitt MH (2003) Application of cogwheel phase cycling to sideband manipulation experiments in solid-state NMR. J Magn Reson 164:286–293

    Article  CAS  PubMed  Google Scholar 

  40. Greaves GN, Gurman SJ, Catlow CRA, Chadwick AV, Houde-Walter S, Henderson CMB, Dobson BR (1991) A structural basis for ionic diffusion in oxide glasses. Philos Mag A 64:1059–1072

    Article  CAS  Google Scholar 

  41. Zhang P, Dunlap C, Florian P, Grandinetti PJ, Farnan I, Stebbins JF (1996) Silicon site distributions in an alkali silicate glass derived by two-dimensional 29Si nuclear magnetic resonance. J Non-Cryst Solids 204:294–300

    Article  CAS  Google Scholar 

  42. Frederick GV, Gibson J, Aurentz DJ, Mueller K (2000) Multiple-rotor-cycle 2D PASS experiments with applications to Pb-207 NMR spectroscopy. J Magn Reson 143:153–160

    Article  Google Scholar 

  43. Sakellariou D, Charpentier T (2007) Shift Anisotropy Tensors in Amorphous Natural-Abundance Solids: High-Resolution 29Si Chemical Shift Anisotropy Distributions under very slow sample rotation. Appl Magn Reson 32:583–594

    Article  CAS  Google Scholar 

  44. Baks M, Rasmussen JT, Nielsen NC (2000) SIMPSON: A general simulation program for solid-state NMR spectroscopy. J Magn Reson 147:296–330

    Article  Google Scholar 

Download references

Acknowledgements

The author Manasi Ghosh is grateful to Science and Engineering Research Board (SERB)-POWER research grant (file no. SPG/2021/000303), Department of Science and Technology (DST), Government of India, IoE-BHU Seed Grant-II (Dev. Scheme No. 6031(B), for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Krishna Kishor Dey had performed all the experiments. Prince Sen, Bijay Laxmi Pradhan, Lekhan Lodhi, had analyze the data, and make Figures of the manuscript under the guidance of Dr. Manasi Ghosh and Dr. Krishna Kishor Dey. Dr. Manasi Ghosh and Dr. Krishna Kishor Dey had prepared the manuscript.

Corresponding authors

Correspondence to Manasi Ghosh or Krishna Kishor Dey.

Ethics declarations

(i) There is no need of ethical approval because this study is not done on any animal or human

(ii) All authors give their consent to participate in this project.

(iii) All authors give their consent for publication in Silicon

(iv) All data and materials are available by request

(v) There is no competing interests

(vi) All funding are acknowledged

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, P., Pradhan, B.L., Lodhi, L. et al. Precise Measurement of Qn Species Distributions in Modified Silicate Glass Using Phase-Adjusted Spinning Sideband NMR Experiment. Silicon 15, 8065–8071 (2023). https://doi.org/10.1007/s12633-023-02639-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02639-5

Keywords

Navigation