Log in

Mechanical, Dielectric and Thermal Stability of Silicon Oxynitride Nanoparticle Dispersed Tamarind Fiber-Reinforced Epoxy Bio-composite

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The importance of Si2N2O nanoparticle and tamarind fiber integration into a liquid diglycidyl-ether of bisphenol-A (LY556) based epoxy resin composite was investigated in this research. The primary objective of this study was to evaluate the mechanical, dielectrical and thermal properties of Si2N2O nanoparticle dispersed tamarind fiber-reinforced epoxy composite. The bio-composite laminates were prepared using hand lay-up method and examined in accordance with ASTM standards. The incorporation of Si2N2O nanoparticles enhances the tensile strength, flexural strength, and Izod impact strength, which seem to be 132 MPa, 172 MPa, and 5.74 J for composite designation 'N3', respectively. However, the 'N4' composite has the maximum hardness value of up to 92 Shore-D. In comparison to all other composite designations, ‘N4’ exhibits the highest dielectric loss and constant values of 0.94 and 6.2, respectively, as well as the highest reported Tg values of 550 °C. These mechanically strong, dielectrically and thermally stable composites could be utilised in a variety of industrial sectors, automotive parts, sports, and household applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No data available to deposit as private.

References

  1. Prakash VA, Viswanthan R (2019) Fabrication and characterization of echinoidea spike particles and kenaf natural fibre-reinforced Azadirachta-Indica blended epoxy multi-hybrid bio composite. Composites part A: applied science and manufacturing, 118, pp.317–326

  2. Alshahrani H, Prakash VA (2023) Development of highly flexible electromagnetic interference shielding composites for electronic applications using Cobalt/Hevea brasiliensis seed husk carbon dots/Bamboo microfibre-polyvinyl alcohol. Industrial Crops and Products, 191, p. 115967

  3. Amin, Muhammad Nasir et al. (2022) Materials (Basel, Switzerland) vol. 15,10 3431. 10 May. 2022, https://doi.org/10.3390/ma15103431

  4. Alshahrani H, Prakash VA (2022) Mechanical, fatigue and DMA behaviour of high content cellulosic corn husk fibre and orange peel biochar epoxy biocomposite: a greener material for cleaner production. J Clean Prod 374:133931

  5. Alshahrani, Hassan, VR Arun Prakash (2022) Progress in organic coatings 172 : 107080

  6. Joshua O et al. Composite Interfaces, 28:9, 925–960, https://doi.org/10.1080/09276440.2020.1826274

  7. Maheswari et al (2013) Int J Polym Anal Charact 18:520–533. https://doi.org/10.1080/1023666X.2013.816073

    Article  CAS  Google Scholar 

  8. Chimsah et al. Academic Journals (2020) 14–9.http://hdl.handle.net/123456789/3006

  9. Baig et al (2021) Materials Today: Proceedings 45:257–263. https://doi.org/10.1016/j.matpr.2020.10.433

    Article  CAS  Google Scholar 

  10. Wu Shoujun et al (2013) Int J Refract Metals Hard Mater 36:97–100. https://doi.org/10.1016/j.ijrmhm.2012.07.007

    Article  CAS  Google Scholar 

  11. Wang Yingxia et al (2020) Ceram J Int 467:8725–8729. https://doi.org/10.1016/j.ceramint.2019.12.111

    Article  CAS  Google Scholar 

  12. ** **ng et al (2020) J Hazard Mater 400:123145. https://doi.org/10.1016/j.jhazmat.2020.123145

    Article  CAS  PubMed  Google Scholar 

  13. Parrillo ety al (2021) SN Appl Sci 3:268. https://doi.org/10.1007/s42452-021-04307-y

    Article  CAS  Google Scholar 

  14. Merneedi, Anjibabu, et al, (2021) Experimental investigation on mechanical properties of carbon nanotube-reinforced epoxy composites for automobile application." J Nanomater 2021

  15. Merizgui T et al (2019) Mater Res Express 6(4):046102. https://doi.org/10.1088/2053-1591/aaf9de

    Article  CAS  Google Scholar 

  16. Arun Prakash VR et al (2019) Mater Res Express 6:076113. https://doi.org/10.1088/2053-1591/ab1694

    Article  CAS  Google Scholar 

  17. Arun et al (2019). Silicon. https://doi.org/10.1007/s12633-019-00347-7

    Article  Google Scholar 

  18. Natrayan L, Merneedi A, Bharathiraja G, Kaliappan S, Veeman D, Murugan P (2021) Processing and characterization of carbon nanofibre composites for automotive applications. J Nanomater 2021:1–7

  19. Vincent et al (2022) Biomass Conv Bioref 12:4009–4019. https://doi.org/10.1007/s13399-020-00831-w

    Article  CAS  Google Scholar 

  20. Mahadevaswamy et al. (2019) Materials Today: Proceedings, S2214785319332006–.https://doi.org/10.1016/j.matpr.2019.08.211

  21. Ramaswamy R, Gurupranes SV, Kaliappan S, Natrayan L, Patil PP (2022) Characterization of prickly pear short fiber and red onion peel biocarbon nanosheets toughened epoxy composites. Polym Compos 43(8):4899–4908

  22. Senthil Kumar S et al (2022) Mechanical, fracture toughness, and fatigue behavior of spinifex littoreus fiber on echinoidea-spike toughened epoxy composite.". Polym Compos 43(4):2329–2340

    Article  CAS  Google Scholar 

  23. Merizgui T et al (2018). Mater Res Express. https://doi.org/10.1088/2053-1591/11f9de

    Article  Google Scholar 

  24. G. Devi, N Nagabhooshanam, M Chokkalingam, SK Sahu (2022) Polym Compos, 1. https://doi.org/10.1002/pc.26898

  25. Samuel B et al (2021) Silicon 13:1703–1712. https://doi.org/10.1007/s12633-020-00569-0

    Article  CAS  Google Scholar 

  26. Subbiah Ram et al (2022) Effect of nanosilica on mechanical, thermal, fatigue, and antimicrobial properties of cardanol oil/sisal fiber reinforced epoxy composite.". Polym Compos 43(11):7940–7951

    Article  CAS  Google Scholar 

  27. Thiyagu et al (2021). Biomass Conversion and Biorefnery. https://doi.org/10.1007/s13399-021-01941-9

    Article  Google Scholar 

  28. Arun Prakash VR et al (2016) Appl Surf Sci 384(16):99–106. https://doi.org/10.1016/j.apsusc.2016.04.185

    Article  CAS  Google Scholar 

  29. Alshahrani Hassan et al (2022) Effect of palmyra sprout fiber and biosilica on mechanical, wear, thermal and hydrophobic behavior of epoxy resin composite.". J Indust Text 52:15280837221137382

    CAS  Google Scholar 

  30. Alshahrani Hassan et al (2022) Mechanical properties study on sandwich composites of glass fiber reinforced plastics (GFRP) using liquid thermoplastic resin, Elium®: preliminary experiments.". Coatings 12(10):1423

    Article  CAS  Google Scholar 

Download references

Funding

No funding received for this research work.

Author information

Authors and Affiliations

Authors

Contributions

Suganya G-Research work and drafting.

Manoj Kumar S-Research work.

Nagaraj M-Testing.

Velumani-Testing.

Corresponding author

Correspondence to G. Suganya.

Ethics declarations

Yes.

Ethics approval

Not applicable.

Consent to participate

NA

Consent for publication

Yes. All permission granted.

Compliance with ethical standards

Yes.

Competing interests

Nil.

Conflicts of interest

Nil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suganya, G., Kumar, S.M., Nagaraj, M. et al. Mechanical, Dielectric and Thermal Stability of Silicon Oxynitride Nanoparticle Dispersed Tamarind Fiber-Reinforced Epoxy Bio-composite. Silicon 15, 4019–4025 (2023). https://doi.org/10.1007/s12633-023-02320-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02320-x

Keywords

Navigation