Log in

Monolayer Silicon Carbide as an Efficient Adsorbent for Volatile Organic Compounds: An Ab Initio Approach

  • Short Communication
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Volatile organic compounds (VOCs) can seriously affect life forms if exposed for a long period. In this study, the removal of commonly occurring VOCs, namely 1,3-butadiene, benzene, p-xylene, indole and toluene on monolayer silicon carbide (SiC), was studied using density functional theory (DFT). The thermodynamic feasibility for the adsorption of VOCs on the monolayer SiC was examined by calculating the adsorption energies. The non-covalent interactions operating during the adsorption of VOCs were studied by the reduced density gradient scatter plots and non-covalent interaction isosurfaces. The distributions of the highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) and molecular electrostatic potential surfaces were also analyzed. After the adsorption, the orientations of the VOCs showed a tendency to orient in a plane parallel to monolayer SiC. The DFT analysis suggested that the monolayer SiC with C atoms having one unsatisfied valency increased the Van der Waal interactions between the VOCs and the monolayer SiC. The overall analysis showed that the adsorption strength of monolayer SiC towards the chosen VOCs follows the order: p-xylene > benzene > toluene >1,3-butadiene > indole.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data Availability

The associated data with this study is available in the supplementary information.

References

  1. Montero-Montoya R, López-Vargas R, Arellano-Aguilar O (2018) Volatile organic compounds in air: sources, distribution, exposure and associated illnesses in children. Ann Glob Heal 84:225–238. https://doi.org/10.29024/aogh.910

    Article  Google Scholar 

  2. McDonald BC, de Gouw JA, Gilman JB, Jathar SH, Akherati A, Cappa CD, Jimenez JL, Lee-Taylor J, Hayes PL, McKeen SA, Cui YY, Kim S-W, Gentner DR, Isaacman-VanWertz G, Goldstein AH, Harley RA, Frost GJ, Roberts JM, Ryerson TB, Trainer M (2018) Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science (80-) 359:760–764. https://doi.org/10.1126/science.aaq0524

    Article  CAS  Google Scholar 

  3. Khalil C, Nasir J (2010) Toxicity of volatile organic compounds (VOCs) mixtures using human derived cells, pp. 3–12. https://doi.org/10.2495/ETOX100011

  4. Bakand S, Winder C, Khalil C, Hayes A (2006) A novel in vitro exposure technique for toxicity testing of selected volatile organic compounds. J Environ Monit 8:100–105. https://doi.org/10.1039/B509812B

    Article  CAS  PubMed  Google Scholar 

  5. Li AJ, Pal VK, Kannan K (2021) A review of environmental occurrence, toxicity, biotransformation and biomonitoring of volatile organic compounds. Environ Chem Ecotoxicol 3:91–116. https://doi.org/10.1016/j.enceco.2021.01.001

    Article  CAS  Google Scholar 

  6. Mirzaei A, Leonardi SG, Neri G (2016) Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram Int 42:15119–15141. https://doi.org/10.1016/j.ceramint.2016.06.145

    Article  CAS  Google Scholar 

  7. Wang P, Zhao W (2008) Assessment of ambient volatile organic compounds (VOCs) near major roads in urban Nan**g, China. Atmos Res 89:289–297. https://doi.org/10.1016/j.atmosres.2008.03.013

    Article  CAS  Google Scholar 

  8. Hartikainen A, Yli-Pirilä P, Tiitta P, Leskinen A, Kortelainen M, Orasche J, Schnelle-Kreis J, Lehtinen KEJ, Zimmermann R, Jokiniemi J, Sippula O (2018) Volatile organic compounds from logwood combustion: emissions and transformation under dark and photochemical aging conditions in a smog chamber. Environ Sci Technol 52:4979–4988. https://doi.org/10.1021/acs.est.7b06269

    Article  CAS  PubMed  Google Scholar 

  9. Zhang L, Wang X, Li H, Cheng N, Zhang Y, Zhang K, Li L (2021) Variations in levels and sources of atmospheric VOCs during the continuous haze and non-haze episodes in the urban area of Bei**g: a case study in spring of 2019. Atmosphere (Basel) 12:171. https://doi.org/10.3390/atmos12020171

    Article  CAS  Google Scholar 

  10. Shuai J, Kim S, Ryu H, Park J, Lee CK, Kim G-B, Ultra VU, Yang W (2018) Health risk assessment of volatile organic compounds exposure near Daegu dyeing industrial complex in South Korea. BMC Public Health 18:528. https://doi.org/10.1186/s12889-018-5454-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lewandowski DA (2017) Design of Thermal Oxidation Systems for volatile organic compounds. CRC Press. https://doi.org/10.1201/9781315141060

    Book  Google Scholar 

  12. Malhautier L, Khammar N, Bayle S, Fanlo J-L (2005) Biofiltration of volatile organic compounds. Appl Microbiol Biotechnol 68:16–22. https://doi.org/10.1007/s00253-005-1960-z

    Article  CAS  PubMed  Google Scholar 

  13. Hossain MM, Mok YS, Nguyen VT, Sosiawati T, Lee B, Kim YJ, Lee JH, Heo I (2022) Plasma-catalytic oxidation of volatile organic compounds with honeycomb catalyst for industrial application. Chem Eng Res Des 177:406–417. https://doi.org/10.1016/j.cherd.2021.11.010

    Article  CAS  Google Scholar 

  14. Kamal MS, Razzak SA, Hossain MM (2016) Catalytic oxidation of volatile organic compounds (VOCs) – a review. Atmos Environ 140:117–134. https://doi.org/10.1016/j.atmosenv.2016.05.031

    Article  CAS  Google Scholar 

  15. Bouchaala (2012) Volatile organic compounds removal methods: a review. Am J Biochem Biotechnol 8:220–229. https://doi.org/10.3844/ajbbsp.2012.220.229

    Article  CAS  Google Scholar 

  16. De San Luis A, Santini CC, Chalamet Y, Dufaud V (2019) Removal of volatile organic compounds from bulk and emulsion polymers: a comprehensive survey of the existing techniques. Ind Eng Chem Res 58:11601–11623. https://doi.org/10.1021/acs.iecr.9b00968

    Article  CAS  Google Scholar 

  17. Li X, Zhang L, Yang Z, Wang P, Yan Y, Ran J (2020) Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review. Sep Purif Technol 235:116213. https://doi.org/10.1016/j.seppur.2019.116213

    Article  CAS  Google Scholar 

  18. Yadav A, Dindorkar SS (2022) Adsorption behaviour of hexagonal boron nitride nanosheets towards cationic, anionic and neutral dyes: insights from first principle studies. Colloids Surfaces A Physicochem Eng Asp 640:128509. https://doi.org/10.1016/j.colsurfa.2022.128509

    Article  CAS  Google Scholar 

  19. Yadav A, Dindorkar SS, Ramisetti SB, Sinha N (2022) Simultaneous adsorption of methylene blue and arsenic on graphene, boron nitride and boron carbon nitride nanosheets: insights from molecular simulations. J. Water Process Eng. 46:102653. https://doi.org/10.1016/j.jwpe.2022.102653

    Article  Google Scholar 

  20. Yadav A, Sinha N (2022) Nanomaterial-based gas sensors: a review on experimental and theoretical studies. Mater Express 12:1–33. https://doi.org/10.1166/mex.2022.2121

    Article  CAS  Google Scholar 

  21. Jha RK, Nanda A, Yadav A, Sai R, Bhat N (2022) 2D-MoSe2/0D-ZnO nanocomposite for improved H2S gas sensing in dry air ambience. J Alloys Compd 926:166825. https://doi.org/10.1016/j.jallcom.2022.166825

    Article  CAS  Google Scholar 

  22. Yadav A, Dindorkar SS, Ramisetti SB (2022) Adsorption behaviour of boron nitride nanosheets towards the positive, negative and the neutral antibiotics: insights from first principle studies. J Water Process Eng 46:102555. https://doi.org/10.1016/j.jwpe.2021.102555

    Article  Google Scholar 

  23. Yadav A (2022) Monolayered carbides of main group elements (Si, Ge, Sn and Pb) for NO2 gas sensing: insights from first-principle studies. Silicon. https://doi.org/10.1007/s12633-022-01987-y

  24. Ou P, Song P, Liu X, Song J (2019) Superior sensing properties of black phosphorus as gas sensors: a case study on the volatile organic compounds. Adv Theory Simulations 2:1800103. https://doi.org/10.1002/adts.201800103

    Article  CAS  Google Scholar 

  25. Su Y, Ao Z, Ji Y, Li G, An T (2018) Adsorption mechanisms of different volatile organic compounds onto pristine C2N and Al-doped C2N monolayer: a DFT investigation. Appl Surf Sci 450:484–491. https://doi.org/10.1016/j.apsusc.2018.04.157

    Article  CAS  Google Scholar 

  26. Aghaei SM, Aasi A, Farhangdoust S, Panchapakesan B (2021) Graphene-like BC6N nanosheets are potential candidates for detection of volatile organic compounds (VOCs) in human breath: a DFT study. Appl Surf Sci 536:147756. https://doi.org/10.1016/j.apsusc.2020.147756

    Article  CAS  Google Scholar 

  27. Hussain T, Sajjad M, Singh D, Bae H, Lee H, Larsson JA, Ahuja R, Karton A (2020) Sensing of volatile organic compounds on two-dimensional nitrogenated holey graphene, graphdiyne, and their heterostructure. Carbon N Y 163:213–223. https://doi.org/10.1016/j.carbon.2020.02.078

    Article  CAS  Google Scholar 

  28. P.K. Mishra, R. Malik, V.K. Tomer, N. Joshi (2020) Hybridized Graphitic Carbon Nitride (g-CN) as High Performance VOCs Sensor, pp. 285–302. https://doi.org/10.1007/978-981-15-4810-9_11

  29. Kunaseth M, Poldorn P, Junkeaw A, Meeprasert J, Rungnim C, Namuangruk S, Kungwan N, Inntam C, Jungsuttiwong S (2017) A DFT study of volatile organic compounds adsorption on transition metal deposited graphene. Appl Surf Sci 396:1712–1718. https://doi.org/10.1016/j.apsusc.2016.11.238

    Article  CAS  Google Scholar 

  30. Sangnikul P, Tabtimsai C, Rakrai W, Wanno B (2020) DFT investigation of toluene adsorption on silicon carbide nanosheet do** with transition metal for storage and sensor application 07:14–21. https://doi.org/10.14456/ssstj.2020.3

  31. Wallingford CT (2013) Gaussian, Inc.

  32. Tirado-Rives J, Jorgensen WL (2008) Performance of B3LYP density functional methods for a large set of organic molecules. J Chem Theory Comput 4:297–306. https://doi.org/10.1021/ct700248k

    Article  CAS  PubMed  Google Scholar 

  33. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  34. Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041. https://doi.org/10.1063/1.474659

    Article  Google Scholar 

  35. Caldeweyher E, Bannwarth C, Grimme S (2017) Extension of the D3 dispersion coefficient model. J Chem Phys 147:034112. https://doi.org/10.1063/1.4993215

    Article  CAS  PubMed  Google Scholar 

  36. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  37. Dindorkar SS, Patel RV, Yadav A (2022) Unravelling the interaction between boron nitride nanosheets and organic pesticides through density functional theory studies. Colloids Surfaces A Physicochem. Eng. Asp. 649:129550. https://doi.org/10.1016/j.colsurfa.2022.129550

    Article  CAS  Google Scholar 

  38. Anithaa VS, Suresh R, Kuklin AV, Vijayakumar S (2022) Adsorption of volatile organic compounds on pristine and defected nanographene. Comput Theor Chem 1211:113664. https://doi.org/10.1016/j.comptc.2022.113664

    Article  CAS  Google Scholar 

  39. Dindorkar SS, Yadav A (2022) Monolayered silicon carbide for sensing toxic gases: a comprehensive study based on the first-principle density functional theory. Silicon. https://doi.org/10.1007/s12633-022-01899-x

  40. Ouellette RJ, Rawn JD (2015) Structure and bonding in organic compounds. Org. Chem. Study Guid., Elsevier, pp. 1–16. https://doi.org/10.1016/B978-0-12-801889-7.00001-7

  41. Yadav A, Dindorkar SS (2022) Vacancy defects in monolayer boron carbon nitride for enhanced adsorption of paraben compounds from aqueous stream: a quantum chemical study. Surf Sci 723:122131. https://doi.org/10.1016/j.susc.2022.122131

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The communication number is 128/2022. The author thanks Dr B. Ganguly, CSIR-CSMCRI, for his help in theoretical calculations.

Author information

Authors and Affiliations

Authors

Contributions

A.Y. - Conceptualization, Methodology, Visualization, Investigation, Data curation, Writing - original draft, Writing - review & editing.

Corresponding author

Correspondence to Anshul Yadav.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

We consent to publish the paper in this journal.

Conflict of Interest

The authors declare no conflict of interest.

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A. Monolayer Silicon Carbide as an Efficient Adsorbent for Volatile Organic Compounds: An Ab Initio Approach. Silicon 15, 1563–1569 (2023). https://doi.org/10.1007/s12633-022-02120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02120-9

Keywords

Navigation