Log in

DFT Study of CO2 Reduction to CH3OH and Oxygen Reduction Reaction on Surface of Carbon and Silicon Catalysts

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In life processes and in energy-converting systems, the oxygen reduction reaction has high importance and converting carbon dioxide to methanol is high industrial opportunity. Discovering and identifying of high-efficiency catalysts is very important for performing the ORR and CO2-RR. In this study, the CO2-RR on surface of Zn-SiNT(7, 0) as catalyst are investigated by M06-2X/6–311 + G (d, p) and M062X-D3/GenECP/SDD methods. The abilities of metal doped nano structures (V-CNT(10, 0) and Cr-C48) for ORR by possible mechanisms are examined by M06-2X/6–311 + G (d, p) and M062X-D3/GenECP/SDD methods. The acceptable pathways of ORR on V-CNT(10, 0) and Cr-C48 and CO2-RR on Zn-SiNT(7, 0) are examined. The over potential of the CO2-RR on Zn-SiNT(7, 0) is 0.844 V that lower than metal catalysts. Results of this study demonstrated that the Zn-SiNT(7, 0), V-CNT(10, 0) and Cr-C48 have higher ability for ORR and convert the carbon dioxide to methanol than graphite and metal catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Mukherjee D (2019) Ceria Promoted Cu-Ni/SiO2Catalyst for Selective Hydrodeoxygenation of Vanillin. ACS Omega 4:4770–4778

    Article  CAS  Google Scholar 

  2. Yan Y, Jien R (2022) CO2 hydrogenation to methanol on tungsten-doped Cu/CeO2 catalysts. Appl Catal B 306:121098

    Article  CAS  Google Scholar 

  3. Shahmoradi A,Ghorbanzadeh Ahangari M, Ahanshahi MJ,Mirghoreishi M,Fathi E, Mashhadzadeh AH, (2020) J. Sulphur Chem. 41, 593–604

  4. Karami Z, Mashhadzadeh AH, Habibzadeh S, Ganjali MR, Ghardi EM, Hasnaoui A, Vatanpour V, Sharma G, Esmaeili A, Stadler FJ, Saeb MR (2021) Atomic simulation of adsorption of SO2 pollutant by metal (Zn, Be)-oxide and Ni-decorated graphene: a first-principles study. J Mol Model 27:70

    Article  CAS  Google Scholar 

  5. Salmankhani A, Karami Z, Mashhadzadeh AH, Ganjali MR, Vatanpour V, Esmaeili A, Habibzadeh S, Saeb MR, Fierro V, Celzard A (2020). J Carbon Research 6:74

    Article  CAS  Google Scholar 

  6. Hamed Mashhadzadeh A, Ghorbnzadeh Ahangari M, Salmankhani A, Fataliyan M (2018) Phys. E: low-Dimens. Syst. Nanostructures 104:275–285

    CAS  Google Scholar 

  7. Hamed Mashhadzadeh A, Vahedi AM, Ardjmand M, Ghorbanzadeh Ahangari M (2016). Superlattice Microst 100:1094–1102

    Article  Google Scholar 

  8. Yang S, Lyu L, Zhao C (2021) Theoretical Study on a Potential Oxygen Reduction Reaction Electrocatalyst: Single Fe Atoms Supported on Graphite Carbonitride. Langmuir 37:428–436

    Article  Google Scholar 

  9. Zhou L, Deng X, Lu Q (2020) Zeolitic Imidazolate Framework-Derived Ordered Pt–Fe Intermetallic Electrocatalysts for High-Performance Zn-Air Batteries. Energy Fuel 34:11527–11535

    Article  CAS  Google Scholar 

  10. Li Y, Peng P (2020) ACS Sustain. Chem Eng 8:3728–3733

    CAS  Google Scholar 

  11. Gao R, Dai Q (2019) C60-Adsorbed Single-Walled Carbon Nanotubes as Metal-Free, pH-Universal, and Multifunctional Catalysts for Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution. J Am Chem Soc 141:11658–11666

    Article  CAS  Google Scholar 

  12. Deng C, Zhang Q (2019) Template-Free Synthesis of Chemically Asymmetric Silica Nanotubes for Selective Cargo Loading and Sustained Drug Release. Chem Mater 31:4291–4298

    Article  CAS  Google Scholar 

  13. Liu S, Cheng L (2019) ACS Sustain. Chem Eng 7:8136–8144

    CAS  Google Scholar 

  14. Hu C, Qu J (2019) Carbon Nanomaterials for Energy and Biorelated Catalysis: Recent Advances and Looking Forward. ACS Central Sci 5:389–408

    Article  CAS  Google Scholar 

  15. He B, Shen J, Ma D, Phys J (2018) Boron-Doped C3N Monolayer as a Promising Metal-Free Oxygen Reduction Reaction Catalyst: A Theoretical Insight. Chem C 122:20312–20322

    CAS  Google Scholar 

  16. Mohammadi M, Najafi H, Mohamadi Yarijani Z, Vaezi G, Hojati V (2019) Piperine pretreatment attenuates renal ischemia-reperfusion induced liver injury. Heliyon 5:e02180

    Article  Google Scholar 

  17. Najafi H, Mohamadi Yarijani Z, Changizi-Ashtiyani S, Mansouri K, Modarresi M, Madani SH, Bastani B (2017) Protective effect of Malva sylvestris L. extract in ischemia-reperfusion induced acute kidney and remote liver injury. PLoS One 20:e0188270

    Article  Google Scholar 

  18. Zhou X, Gao Y (2017) Improved Oxygen Reduction Reaction Performance of Co Confined in Ordered N-Doped Porous Carbon Derived from ZIF-67@PILs. Ind Eng Chem Res 56:11100–11110

    Article  CAS  Google Scholar 

  19. Yang J, Hu J, Weng M (2017) ACS Appl. Mater. Interfaces 9:4587–4596

    Article  CAS  Google Scholar 

  20. Jayasinghe AS, Salzman S (2016) Cryst. Growth Des 16:7058–7066

    Article  CAS  Google Scholar 

  21. Wong CH, Sofer Z (2016) ACS Appl. Mater Interfaces 8:31849–31855

    Article  CAS  Google Scholar 

  22. Reyes M, Azaoum I (2021) NiGa Unsupported Catalyst for CO2Hydrogenation at Atmospheric Pressure. Tentative Reaction Pathways. Ind Eng Chem Res 60:18891–18899

    Article  Google Scholar 

  23. Zhang J, Mao D (2021) ACS Sustain. Chem Eng 9:13902–13914

    CAS  Google Scholar 

  24. Murthy PS, Liang W (2021) Cu-Based Nanocatalysts for CO2Hydrogenation to Methanol. Energy Fuel 35:8558–8584

    Article  CAS  Google Scholar 

  25. Zheng Y, Guan J (2021) ACS Sustain. Chem Eng 9:1754–1761

    CAS  Google Scholar 

  26. De S, Dokania A (2020) Advances in the Design of Heterogeneous Catalysts and Thermocatalytic Processes for CO2Utilization. ACS Catal 10:14147–14185

    Article  CAS  Google Scholar 

  27. Jiang X, Nie X (2020) Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chem Rev 120:7984–8034

    Article  CAS  Google Scholar 

  28. Chang K, Zhang H (2020). ACS Catal 10:613–631

    Article  CAS  Google Scholar 

  29. Liang B, Ma J (2019) Investigation on Deactivation of Cu/ZnO/Al2O3Catalyst for CO2Hydrogenation to Methanol. Ind Eng Chem Res 58:9030–9037

    Article  CAS  Google Scholar 

  30. Knowles PJ, Sexton GJ, Handy NC (1982) Studies using the CASSCF wavefunction. Chem Phys 72:337–347

    Article  CAS  Google Scholar 

  31. Knowles PJ, Werner HJ (1985) An efficient second-order MC SCF method for long configuration expansions. Chem Phys Lett 115:259–267

    Article  CAS  Google Scholar 

  32. Rice JE, Amos RD, Lee TJ, Schaefer HF (1986) The analytic configuration interaction gradient method: Application to the cyclic and open isomers of the S3molecule. J Chem Phys 85:963–968

    Article  CAS  Google Scholar 

  33. Watts JD, Dupuis M (1988) Parallel computation of the Moller-Plesset second-order contribution to the electronic correlation energy. J Comput Chem 9:158–170

    Article  CAS  Google Scholar 

  34. Saunders VR, Lenthe JH (1983) The direct CI method. Mol Phys 48:923–954

    Article  CAS  Google Scholar 

  35. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  36. Paton RS, Kim S, Ross AG (2011) Experimental Diels-Alder Reactivities of Cycloalkenones and Cyclic Dienes Explained through Transition-State Distortion Energies. Angew Chem Int Ed 50:10366–10368

    Article  CAS  Google Scholar 

  37. Linder M, Brinck T (2012) Stepwise Diels–Alder: More than Just an Oddity? A Computational Mechanistic Study. J Org Chem 77:6563–6573

    Article  CAS  Google Scholar 

  38. Gao XF,Cui CX,Liu YJ,Phys J (2012) J Phys Org Chem 25: 850–855

  39. Zhao Y, Truhlar DG (2011) Applications and validations of the Minnesota density functionals. Chem Phys Lett 502:1–13

    Article  CAS  Google Scholar 

  40. Linder M, Manta B, Olsson P, Brinck T (2012) Envisioning an enzymatic Diels–Alder reaction by in situ acid–base catalyzed diene generation. Chem Commun 48:5665–5667

    Article  CAS  Google Scholar 

  41. Simón L, Goodman JM (2011) How reliable are DFT transition structures? Comparison of GGA, hybrid-meta-GGA and meta-GGA functionals. Org Biomol Chem 9:689–700

    Article  Google Scholar 

  42. Li X, Liu Y (2022). J Phys Chem C 126:4008–4014

    Article  CAS  Google Scholar 

  43. Zheng F, Ji Y (2022). J Phys Chem C 126:30–39

    Article  CAS  Google Scholar 

  44. Wang K, Chu Y (2021). Energy Fuel 35:20243–20249

    Article  CAS  Google Scholar 

  45. Peng Q, Shu P (2021). ACS Omega 6:24731–24738

    Article  CAS  Google Scholar 

  46. Gandaryus Saputro A, Phys J (2021) Formation of Tilted FeN4Configuration as the Origin of Oxygen Reduction Reaction Activity Enhancement on a Pyrolyzed Fe-N-C Catalyst with FeN4-Edge Active Sites. Chem. C 125:19682–19696

    Google Scholar 

  47. Pang J, ** W (2021) Two-Dimensional Fe8N Nanosheets: Ferromagnets and Nitrogen Diffusion. J Phys Chem Lett 12:8453–8459

    Article  CAS  Google Scholar 

  48. Kim IH, Lim J (2021). Account Mater Res 2:394–406

    Article  CAS  Google Scholar 

  49. Xu X, Zhang X (2021) ACS Appl. Mater Interf 13:16279–16288

    Article  CAS  Google Scholar 

  50. Al-Zoubi T (2021) Effects of Superparamagnetic Iron Nanoparticles on Electrocatalysts for the Reduction of Oxygen. Inorg Chem 60:4236–4242

    Article  CAS  Google Scholar 

  51. Das SK, Kesh A (2022) N-, F-, and Fe-Doped Mesoporous Carbon Derived from Corncob Waste and Creating Oxygen Reduction Reaction Active Centers with a Maximum Charge Density of ≥0.25 for a Polymer Electrolyte Fuel Cell Catalyst. Energy Fuel 36:2108–2122

    Article  CAS  Google Scholar 

  52. Bhalothia D, Hsiung W (2021) Submillisecond Laser Annealing Induced Surface and Subsurface Restructuring of Cu–Ni–Pd Trimetallic Nanocatalyst Promotes Thermal CO2Reduction. ACS Applied Energy Materials 4:14043–14058

    Article  CAS  Google Scholar 

  53. Zhang M, Dai Y (2021) Solvothermal Synthesis of Nanostructured PtnNi Tetrahedrons with Enhanced Platinum Utilization and Activity toward Oxygen Reduction Electrocatalysis. J Phys Chem C 125:27199–27206

    Article  CAS  Google Scholar 

  54. Kong Z, Zhang D (2021) Advanced Cathode Electrocatalysts for Fuel Cells: Understanding, Construction, and Application of Carbon-Based and Platinum-Based Nanomaterials. ACS Materials Letters 3:1610–1634

    Article  CAS  Google Scholar 

  55. Batool N, Iqbal W (2021) Encapsulation of Pt Nanocrystals inside Pyrolyzed UiO-66-NH2Metal–Organic Framework Supports as Oxygen Reduction Catalysts. ACS Applied Nano Materials 4:12365–12372

    Article  CAS  Google Scholar 

  56. Wu C, Cheng D (2021) Understanding and Application of Strong Metal–Support Interactions in Conversion of CO2to Methanol: A Review. Energy Fuel 35:19012–19023

    Article  CAS  Google Scholar 

  57. Mosrati J, Abdel-Mageed AM (2021) Tiny Species with Big Impact: High Activity of Cu Single Atoms on CeO2–TiO2Deciphered byOperandoSpectroscopy. ACS Catal 11:10933–10949

    Article  CAS  Google Scholar 

  58. Chen S, Abdel-Mageed AM (2021) Controlling the O-Vacancy Formation and Performance of Au/ZnO Catalysts in CO2Reduction to Methanol by the ZnO Particle Size. ACS Catal 11:9022–9033

    Article  CAS  Google Scholar 

  59. Zhu J, Ciolca D (2021) Liang Liu. ACS Catal 11:4880–4892

    Article  CAS  Google Scholar 

  60. Preikschas P, Plodinec M (2021) Tuning the Rh–FeOxInterface in Ethanol Synthesis through Formation Phase Studies at High Pressures of Synthesis Gas. ACS Catal 11:4047–4060

    Article  CAS  Google Scholar 

  61. Li G, Yuan H, Mou J, Dai E, Zhang H, Li Z, Zhang X (2022) Electrochemical detection of nitrate with carbon nanofibers and copper co-modified carbon fiber electrodes. Compos Commun 29:101043

    Article  Google Scholar 

  62. Gao M, Liu B, Zhang X, Zhang Y, Li X (2021) Ultrathin MoS2 nanosheets anchored on carbon nanofibers as free-standing flexible anode with stable lithium storage performance. G Han J Alloys Compd 894:162550

    Article  Google Scholar 

  63. Liu H, Li X, Ma Z, Sun M, Li M, Zhang Z, Guo S (2021). Nano Lett 21:10284–10291

    Article  CAS  Google Scholar 

  64. Yan H, Zhao M, Feng X, Zhao S, Zhou X, Li S, Yang Angew C (2022). Chem Int Ed. https://doi.org/10.1002/ange.202116059

  65. Zhang M, Zhu H, ** B, Tian Y, Sun X, Zhang H, Wu B (2022) Surface Hydrophobic Modification of Biochar by Silane Coupling Agent KH-570. Processes 10:301

    Article  CAS  Google Scholar 

  66. Hao W, **e J (2021) Reducing Diffusion-Induced Stress of Bilayer Electrode System by Introducing Pre-Strain in Lithium-Ion Battery. J Electrochem En Conv Stor 18:020909

    Article  CAS  Google Scholar 

  67. Andalib V, Sarkar J (2022) A System with Two Spare Units, Two Repair Facilities, and Two Types of Repairers. Mathematics 10:852

    Article  Google Scholar 

  68. Antoine D, Mohammadi M, Vitt M, Dickie JM, Jyoti SS, Tilbury MA, Wall JG (2022). ACS Sens 7:866–873

    Article  CAS  Google Scholar 

  69. Alibak AH, Khodarahmi M, Fayyazsanavi P, Alizadeh SM, Hadi AJ, Aminzadehsarikhanbeglou E (2022) Simulation the adsorption capacity of polyvinyl alcohol/carboxymethyl cellulose based hydrogels towards methylene blue in aqueous solutions using cascade correlation neural network (CCNN) technique. J Clean Prod 337:130509

    Article  CAS  Google Scholar 

  70. Pelalak R, Heidari Z (2014) Lithographically Cut Multiwalled Carbon Nanotubes: Opening Caps, Controlling Length Distribution, and Functionalization. J Dispers Sci Technol 35:808–814

    Article  CAS  Google Scholar 

  71. Mudiyanselage SE, Nguyen PHD, Rajabi MS, Akhavian R (2021) Automated Workers’ Ergonomic Risk Assessment in Manual Material Handling Using sEMG Wearable Sensors and Machine Learning. Electronics 10:2558

    Article  Google Scholar 

  72. Pourbavarsad MS, Jalalieh BJ, Harkins C, Sevanthi R, Jackson WA (2021) Nitrogen oxidation and carbon removal from high strength nitrogen habitation wastewater with nitrification in membrane aerated biological reactors. J Environ Chem Eng 9:106271

    Article  CAS  Google Scholar 

  73. Pourbavarsad MS, Jalalieh BJ, Landes N, Jackson WA (2022) Impact of free ammonia and free nitrous acid on nitritation in membrane aerated bioreactors fed with high strength nitrogen urine dominated wastewater. J. Environ. Chem. Eng. 10:107001

    Article  CAS  Google Scholar 

  74. Jalalieh BJ,Jackson WA,Cumbie B,Pourbavarsad MS (2021) Organic Carbon and Nitrogen Removal in a Single-Stage Nitrification-Denitrification/Anammox (NDX) System Treating Early Planetary Base (EPB) Wastewater, 50th International Conference on Environmental Systems, Lisbon, Portugal, 12–15 July 2021

  75. Yosofvand M, Liyanage S, Kalupahana NS, Scoggin S, Moustaid-Moussa N, Moussa H (2020) AdipoGauge software for analysis of biological microscopic images. Adipocyte 9:360–373

    Article  CAS  Google Scholar 

  76. Wang X, Tang S, Chai S, Qin J, Pei W, Huang C (2021) Preparing printable bacterial cellulose based gelatin gel to promote in vivo bone regeneration. Carbohydr Polym 270:118342

    Article  CAS  Google Scholar 

  77. Dong H, Zheng L, Yu P, Jiang Q, Wu Y, Huang C, Yin B (2019). ACS Sustain Chem Eng 8:256–266

    Article  Google Scholar 

  78. Huang C, Su Y, Shi J, Yuan C, Zhai S, Yong Q (2019) Revealing the effects of centuries of ageing on the chemical structural features of lignin in archaeological fir woods. New J Chem 43:3520–3528

    Article  CAS  Google Scholar 

  79. Huang C, Tang S, Zhang W, Tao Y, Lai C, Li X, Yong Q (2018) ACS Sustain. Chem Eng 6:12522–12531

    CAS  Google Scholar 

  80. Niknam B, Aboutalebi FH, Ma W, Nejad RM. Structures, 2021 34:4986–4998

  81. Ma W (2021) Behavior of Aged Reinforced Concrete Columns under High Sustained Concentric and Eccentric Loads (Doctoral dissertation, Ph. D. Theses, University of Nevada, Las Vegas

  82. Ma W, Jia L (2020) Nonlinear Analysis of Progressive Collapse of Reinforced Concrete (RC) Building by Different Kinds of Column Removal. Front Archit Res Eng 3:1–6

    Article  Google Scholar 

  83. Jiang J, Zhang T, Chen D (2021) IEEE trans. Power Electron 36:10214–10223

    Article  Google Scholar 

  84. Li X, Shang Z, Peng F, Li L, Zhao Y, Liu Z, Power J (2021) Increment-oriented online power distribution strategy for multi-stack proton exchange membrane fuel cell systems aimed at collaborative performance enhancement. Sources 512:230512

    Article  CAS  Google Scholar 

Download references

Acknowledgments

2021 Scientific Research Fund project of Liaoning Provincial Education Department “Study on the development of compound juice of small berry and its quality change during storage” (LJKZ1127).

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Liu (Conceptualization, Investigation, Data curation, Formal analysis) and Qiao (writing, obtain data, software).

Corresponding authors

Correspondence to Bo Liu or **lian Qiao.

Ethics declarations

Ethical Approval

All procedures performed in studies involving human participants are in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to Participate

I confirmed.

Consent for Publication

I confirmed.

Conflicts of Interest/Competing Interests

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Qiao, J. DFT Study of CO2 Reduction to CH3OH and Oxygen Reduction Reaction on Surface of Carbon and Silicon Catalysts. Silicon 14, 12495–12503 (2022). https://doi.org/10.1007/s12633-022-01952-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01952-9

Keywords

Navigation