Log in

Investigation the Effect of Additive Content and Sintering Temperature on the Mechanical Properties of Clay-Bonded and Glass-Bonded Ceramic Parts Produced by Low Injection Molding Method

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, porous SiC parts were produced by the low-pressure injection molding method. The effects of two different silicate-based additives, initial additive content, powder size, and sintering temperature on the morphology, porosity, and mechanical strength of the porous SiC parts were investigated. Aluminum silicate and borosilicate glass were used as the additive materials with different contents of 5–20 wt%. SiC powder with grain size of 3 μm and 15 μm was used as the main material, and the injected parts were sintered at 1200–1400 °C in air. The design of experiment method was used to analyze the results of the experiments. Fracture surface morphology was observed by scanning electron microscopy, and the crystalline phases of the specimens after sintering were identified using X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Material.

Not applicable.

References

  1. Ding S, Zhu S, Zeng YP, Jiang D (2007) Fabrication of mullite-bonded porous silicon carbide ceramics by in situ reaction bonding. J Eur Ceram Soc 27(4):2095–2102. https://doi.org/10.1016/j.jeurceramsoc.2006.06.003

    Article  CAS  Google Scholar 

  2. S. Liu, Y. Zeng, D. J.-C. International, and undefined 2009, “Fabrication and characterization of cordierite-bonded porous SiC ceramics,” Elsevier, Accessed: Nov. 28, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0272884208000953

  3. Y. Li, H. Wu, X. Liu, Z. Huang, D. J.-C. International, and undefined 2019, “Microstructures and properties of solid-state-sintered silicon carbide membrane supports,” Elsevier, Accessed: Nov. 28, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0272884219317456

  4. Chun YS, Kim YW (2005) Processing and mechanical properties of porous silica-bonded silicon carbide ceramics. Met Mater Int 11(5):351–355. https://doi.org/10.1007/BF03027504

    Article  CAS  Google Scholar 

  5. Bukhari SZA, Ha JH, Lee J, Song IH (2017) Fabrication and optimization of a clay-bonded SiC flat tubular membrane support for microfiltration applications. Ceram Int 43(10):7736–7742. https://doi.org/10.1016/j.ceramint.2017.03.079

    Article  CAS  Google Scholar 

  6. C. Bai et al., “Fabrication and properties of cordierite–mullite bonded porous SiC ceramics,” Elsevier, Accessed: Nov. 28, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0272884213015332

  7. U. Vogt, L. Györfy, A. Herzog, … T. G.-J. of P. and, and undefined 2007, “Macroporous silicon carbide foams for porous burner applications and catalyst supports,” Elsevier, Accessed: Nov. 28, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022369706005221

  8. A. Gómez-Martín, M. P. Orihuela, J. A. Becerra, J. Martínez-Fernández, and J. Ramírez-Rico, “Permeability and mechanical integrity of porous biomorphic SiC ceramics for application as hot-gas filters HIGHLIGHTS.” Accessed: Nov. 28, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0264127516308127

  9. H. V. Renate M. de vos, “high-selectivity, High-Flux Silica Memberanes for Gas Separation,” Science (80-. )., vol. 279, no. March, 1998

  10. Y. Li, H. Wu, X. Liu, and Z. Huang, “materials Microstructures and Properties of Porous Liquid-Phase-Sintered SiC Ceramic by Hot Press Sintering,” mdpi.com, 2019, doi: https://doi.org/10.3390/ma12040639

  11. S. Li, C. Wei, L. Zhou, P. Wang, Z. X.-J. of the E. Ceramic, and undefined 2019, “Evaporation-condensation derived silicon carbide membrane from silicon carbide particles with different sizes,” Elsevier, Accessed: Nov. 28, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0955221919300081

  12. E. Simonenko, N. Simonenko, … T. S.-M. C. and, and undefined 2019, “Sol-gel synthesis of SiC@ Y3Al5O12 composite nanopowder and preparation of porous SiC-ceramics derived from it,” Elsevier, Accessed: Nov. 28, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0254058419305267

  13. Z. Luo, W. Han, K. Liu, W. Ao, K. S.-C. International, and undefined 2020, “Influence of bonding phases on properties of in-situ bonded porous SiC membrane supports,” Elsevier, Accessed: Nov. 28, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0272884219335710

  14. Riedel RJBR, Passing G, Schonfelder H (1992) Synthesis of dense silicon-based ceramics at low temperatures. Nature 359:167–169

    Article  Google Scholar 

  15. W. Deng, X. Yu, M. Sahimi, T. T.-J. of membrane science, and undefined 2014, “Highly permeable porous silicon carbide support tubes for the preparation of nanoporous inorganic membranes,” Elsevier, Accessed: Nov. 28, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0376738813007990

  16. S. Li et al., “One step co-sintering of silicon carbide ceramic membrane with the aid of boron carbide,” Elsevier, Accessed: Dec. 09, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0955221920307925

  17. S. Bukhari, J. Ha, J. Lee, I. S.-J. of the E. Ceramic, and undefined 2018, “Oxidation-bonded SiC membrane for microfiltration,” Elsevier, Accessed: Dec. 09, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0955221917306878

  18. Y. Yang et al., “Low-temperature sintering of porous silicon carbide ceramic support with SDBS as sintering aid,” Elsevier, Accessed: Nov. 28, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0272884216322003

  19. S. Hubadillah, M. Othman, … T. M.-C., and undefined 2018, “Fabrications and applications of low cost ceramic membrane from kaolin: A comprehensive review,” Elsevier, Accessed: Nov. 28, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0272884217329231

  20. B. Yuan et al., “Fabrication and microstructure of porous SiC ceramics with Al2O3 and CeO2 as sintering additives,” Elsevier, Accessed: Nov. 28, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0272884216305570

  21. K. Raju and D.-H. Yoon, “Sintering additives for SiC based on the reactivity: a review physical properties of Multiferroic particulate composites view project SiCf/SiC fabrication, electrophoretic deposition, metal-ceramic joining view project sintering additives for SiC based on the reactivity: a review,” Elsevier, doi: https://doi.org/10.1016/j.ceramint.2016.09.022, 2016

  22. D. A. Ray, S. Kaur, R. A. Cutler, and D. K. Shetty, “Effects of additives on the pressure-assisted densification and properties of silicon carbide the densification of silicon carbide (SiC) was studied using a variety of additives (,” Wiley Online Libr, vol. 91, no. 7, pp. 2163–2169, Jul. 2008, doi: https://doi.org/10.1111/j.1551-2916.2008.02467.x

  23. P. Pastila, E. Lara-Curzio, A. Nikkila, and T. Mantyla, “Microstructure and Fracture of Some SiC-based Clay Bonded Hot Gas Filter Materials After Exposure to Thermal Cycling and/or High Temperature Water,” 2002, Accessed: Nov. 28, 2020. [Online]. Available: https://www.osti.gov/servlets/purl/836132

  24. Prabhu V, Patwardhan AV, Patwardhan AW (2017) Fabrication and characterization of micro-porous ceramic membrane based on kaolin and alumina. Indian J Chem Technol 24(4):367–373

    CAS  Google Scholar 

  25. LEONARD AJ (1977) Structural analysis of the transition phases in the kaolinite-Mullite thermal sequence. J Am Ceram Soc 60(1–2):37–43. https://doi.org/10.1111/j.1151-2916.1977.tb16089.x

    Article  CAS  Google Scholar 

  26. N. Ma et al., “Joining of sintered SiC ceramics at a lower temperature using borosilicate glass with laser cladding Si modification layer,” Elsevier, Accessed: Nov. 28, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0955221920309419

  27. Cheng X, Wang Y, Liang Y, Zang J, Lu J, Yu Y, Xu X (2015) Avoiding the oxidation of SiC in SiC-borosilicate glass composites by adding zinc. Corros Sci 90:413–419. https://doi.org/10.1016/j.corsci.2014.10.039

    Article  CAS  Google Scholar 

  28. S. Kim, Y. Kim, I. S.-J. of the E. C. Society, and undefined 2017, “Processing and properties of glass-bonded silicon carbide membrane supports,” Elsevier, Accessed: Nov. 28, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0955221916306197

  29. S. Chae, Y. Kim, I. Song, H. Kim, … J. B.-J. of the K., and undefined 2009, “Low temperature processing and properties of porous frit-bonded SiC ceramics,” jkcs.or.kr, Accessed: Nov. 28, 2020. [Online]. Available: http://jkcs.or.kr/m/makeCookie.php?url=/m/journal/view.php?number=6517

  30. Wang B, Zhang H, Phuong HT, ** F, Yang JF, Ishizaki K (Mar. 2015) Gas permeability and adsorbability of the glass-bonded porous silicon carbide ceramics with controlled pore size. Ceram Int 41(2):2279–2285. https://doi.org/10.1016/j.ceramint.2014.10.032

    Article  CAS  Google Scholar 

  31. D. F. Heaney, Handbook of metal injection molding. 2012

    Book  Google Scholar 

  32. **anfeng Y, Hehan X, Qinglong H, Zhe Z, **ewen X, Li Z, Zhipeng X (2019) Study of thermal degradation mechanism of binders for ceramic injection molding by TGA-FTIR. Ceram Int 45(8):10707–10717. https://doi.org/10.1016/j.ceramint.2019.02.142

    Article  CAS  Google Scholar 

  33. V. N. Chinnathaypgal, R. M. Rangarasaiah, V. Desai, · Sudip, and K. Samanta, “Evaluation of Wear behaviour of metal injection Moulded nickel based metal matrix composite,” Springer, vol. 11, no. 1, pp. 175–185, Feb. 2019, doi: https://doi.org/10.1007/s12633-018-9843-y

  34. Saravana S, Kandaswamy R (Apr. 2019) Investigation on the mechanical and thermal properties of PLA/calcium silicate biocomposites for injection molding applications. Silicon 11(2):1143–1150. https://doi.org/10.1007/s12633-018-9926-9

    Article  CAS  Google Scholar 

  35. S. Behnamfard, & R. T. Mousavian, Y. Afkham, & R. Azari Khosroshahi, K. A. Nekouee, and & D. Brabazon, “Dry Milling of Aluminum and Ceramic Nanoparticles for a Particulate-Injection Casting of Aluminum Matrix Nanocomposites,” Springer, doi: https://doi.org/10.1007/s12633-019-00183-9, 2020

  36. Chan T-Y, Lin S-T (1995) Effects of stearic acid on the injection molding of alumina. J Am Ceram Soc 78(10):2746–2752. https://doi.org/10.1111/j.1151-2916.1995.tb08050.x

    Article  CAS  Google Scholar 

  37. Hnatkova E, Hausnerova B, Filip P (2019) Evaluation of powder loading and flow properties of Al2O3 ceramic injection molding feedstocks treated with stearic acid. Ceram Int 45(16):20084–20090. https://doi.org/10.1016/j.ceramint.2019.06.273

    Article  CAS  Google Scholar 

  38. Ben Trad MA, Demers V, Côté R, Sardarian M, Dufresne L (2020) Numerical simulation and experimental investigation of mold filling and segregation in low-pressure powder injection molding of metallic feedstock. Adv Powder Technol 31(3):1349–1358. https://doi.org/10.1016/j.apt.2020.01.018

    Article  CAS  Google Scholar 

  39. “Design and Analysis of Experiments - Google Books.” https://www.google.com/books/edition/Design_and_Analysis_of_Experiments/Py7bDgAAQBAJ?hl=en&gbpv=1&dq=montgomery+%2B+design+of+experiment&pg=PA1&printsec=frontcover (accessed May 13, 2021)

  40. Ghanbari A, Alizadeh M, Rad RY, Ghasemi E (2015) Effects of micro and nano sized SiC on the rheological properties of al based feedstocks for low pressure injection molding. Int J Eng Trans A Basics 28(10):1172–1179. https://doi.org/10.5829/idosi.ije.2015.28.10a.13

    Article  CAS  Google Scholar 

  41. Thomas-Vielma P, Cervera A, Levenfeld B, Várez A (2008) Production of alumina parts by powder injection molding with a binder system based on high density polyethylene. J Eur Ceram Soc 28(4):763–771. https://doi.org/10.1016/j.jeurceramsoc.2007.08.004

    Article  CAS  Google Scholar 

  42. Christopher SMRH (1965) Power law throughout a packed tube. Ind Eng Chem Fundamen 4:3–7

    Article  Google Scholar 

  43. Yang WW, Yang KY, Hon MH (2003) Effects of PEG molecular weights on rheological behavior of alumina injection molding feedstocks. Mater Chem Phys 78(2):416–424. https://doi.org/10.1016/S0254-0584(02)00203-1

    Article  CAS  Google Scholar 

  44. Ghanbari A, Alizadeh M, Ghasemi E, Rad RY, Ghaffari S (2015) Preparation of optimal feedstock for low-pressure injection molding of Al/SiC nanocomposite. Sci Eng Compos Mater 22(5):549–554. https://doi.org/10.1515/secm-2013-0209

    Article  CAS  Google Scholar 

  45. Khakbiz M, Simchi A, Bagheri R (2005) Analysis of the rheological behavior and stability of 316L stainless steel-TiC powder injection molding feedstock. Mater Sci Eng A 407(1–2):105–113. https://doi.org/10.1016/j.msea.2005.06.057

    Article  CAS  Google Scholar 

  46. S. Xu, Z. Wang, Y. Zhang, … Q. Z.-M. S., and undefined 2018, “The Preparation and Properties of Clay Bonded Silicon Carbide by Using Silicon Carbide Dusting Powder,” Trans Tech Publ, Accessed: Nov. 28, 2020. [Online]. Available: https://www.scientific.net/MSF.922.143

  47. A. Hähnel, E. Pippel, R. Schneider, J. Woltersdorf, and D. Suttor, “Formation and structure of reaction layers in SiC/glass and SiC/SiC composites,” Compos. Part A Appl. Sci. Manuf., vol. 27, no. 9 PART A, pp. 685–690, Jan. 1996, doi: https://doi.org/10.1016/1359-835X(96)00003-6

  48. J. She, T. Ohji, S. K.-J. of the E. C. Society, and undefined 2004, “Oxidation bonding of porous silicon carbide ceramics with synergistic performance,” Elsevier, Accessed: Dec. 09, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0955221903002255

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Hamid Khorsand] and [Rezvan Yavari]. The first draft of the manuscript was written by [Rezvan Yavari] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hamid Khorsand.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavari, R., Khorsand, H. Investigation the Effect of Additive Content and Sintering Temperature on the Mechanical Properties of Clay-Bonded and Glass-Bonded Ceramic Parts Produced by Low Injection Molding Method. Silicon 14, 4775–4785 (2022). https://doi.org/10.1007/s12633-021-01245-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01245-7

Keywords

Navigation