Log in

Improvement the Breakdown Voltage and the On-resistance in the LDMOSFET: Double Buried Metal Layers Structure

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, a new method is investigated to improve the breakdown voltage in the lateral power MOSFET transistors. The structure is based on Double Buried Metal Layers in the Lateral Diffused MOSFET and it is called DBML-LDMOSFET. The metal layers in the buried oxide under the drift region cause the electric field to be more uniform than the conventional structure. In the DBML-LDMOSFET Structure, the breakdown voltage is improved 25% compared to conventional structure and also the specific on-resistance is almost 11.32 mΩ.cm2. In order to investigate the performance of the structures, SILVACO-ATLAS software has been used and the results have been extracted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang Y-H, Lin S-W, Chang C-H (2010) Optimization of high voltage LDMOSFETs with complex multiple-resistivity drift region and field plate. Microelectron Reliab 50(7):949–953

    Article  CAS  Google Scholar 

  2. Orouji AA, Moghadam HA, Dideban A (2010) Double window partial SOI-LDMOSFET: A novel device for breakdown voltage improvement. Phys E Low-Dimensional Syst Nanostruct 43(1):498–502

    Article  CAS  Google Scholar 

  3. Qiao M, Wang Y, Li Y, Zhang B, Li Z (2014) Design of a 1200-V ultra-thin partial SOI LDMOS with n-type buried layer. Superlattice Microst 75:796–805

    Article  CAS  Google Scholar 

  4. Orouji AA, Mahabadi SEJ, Keshavarzi P (2011) A novel partial SOI LDMOSFET with a trench and buried P layer for breakdown voltage improvement. Superlattice Microst 50(5):449–460

    Article  CAS  Google Scholar 

  5. Anvarifard MK (2018) An impressive structure containing triple trenches for RF power performance (TT-SOI-MESFET). J Comput Electron 17(1):230–237

    Article  CAS  Google Scholar 

  6. Anvarifard MK (2017) Creation of a new high voltage device with capable of enhancing driving current and breakdown voltage. Mater Sci Semicond Process 60:60–65

    Article  CAS  Google Scholar 

  7. Bao M, Wang Y (2017) Improving breakdown voltage and self-heating effect for SiC LDMOS with double L-shaped buried oxide layers. Superlattice Microst 102:147–154

    Article  CAS  Google Scholar 

  8. Yuan S, Duan B, Cao Z, Guo H, Yang Y (2016) Analytical model of LDMOS with a double step buried oxide layer. Solid State Electron 123:6–14

    Article  CAS  Google Scholar 

  9. Chen Y et al (2016) A novel low specific on-resistance double-gate LDMOS with multiple buried p-layers in the drift region based on the Silicon-On-Insulator substrate. Superlattice Microst 89:59–67

    Article  CAS  Google Scholar 

  10. Duan B, Yuan S, Cao Z, Yang Y (2014) New superjunction LDMOS with the complete charge compensation by the electric field modulation. IEEE Electron Device Lett 35(11):1115–1117

    Article  Google Scholar 

  11. Zareiee M (2019) A new structure for lateral double diffused MOSFET to control the breakdown voltage and the on-resistance. Silicon 11(6):3011–3019

    Article  CAS  Google Scholar 

  12. Mehrad M, Zareiee M, Orouji AA (2017) Controlled kink effect in a novel high-voltage LDMOS transistor by creating local minimum in energy band diagram. IEEE Trans Electron Devices 64(10):4213–4218

    Article  CAS  Google Scholar 

  13. Duan B, Zhang B, Li Z (2006) New thin-film power MOSFETs with a buried oxide double step structure. IEEE Electron Device Lett 27(5):377–379

    Article  CAS  Google Scholar 

  14. Luo X et al (2009) A high-voltage LDMOS compatible with high-voltage integrated circuits on p-type SOI layer. IEEE Electron Device Lett 30(10):1093–1095

    Article  CAS  Google Scholar 

  15. Luo X et al (2010) Numerical and Experimental Investigation on a Novel High-Voltage ($> $600-V) SOI LDMOS in a Self-Isolation HVIC. IEEE Trans Electron Devices 57(11):3033–3043

  16. Wang Z, Zhang B, Fu Q, **e G, Li Z (2012) An L-shaped trench SOI-LDMOS with vertical and lateral dielectric field enhancement. IEEE Electron Device Lett 33(5):703–705

    Article  Google Scholar 

  17. Luo X, Zhang B, Li Z, Guo Y, Tang X, Liu Y (2007) A novel 700-V SOI LDMOS with double-sided trench. IEEE Electron Device Lett 28(5):422–424

    Article  Google Scholar 

  18. Luo X et al (2011) Ultralow specific on-resistance high-voltage SOI lateral MOSFET. IEEE Electron Device Lett 32(2):185–187

    Article  CAS  Google Scholar 

  19. Yang F-J et al (2013) A 700-V device in high-voltage power ICs with low on-state resistance and enhanced SOA. IEEE Trans Electron Devices 60(9):2847–2853

    Article  Google Scholar 

  20. Zareiee M, Salami H (2018) Inserting PN junction in a power device for achieving improved figure of merit. In: 2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), pp 1–4

  21. Kim IJ, Matsumoto S, Sakai T, Yachi T (1994) Breakdown voltage improvement for thin-film SOI power MOSFET’s by a buried oxide step structure. IEEE Electron Device Lett 15(5):148–150

    Article  Google Scholar 

  22. Orouji AA, Sharbati S, Fathipour M (2009) A new partial-SOI LDMOSFET with modified electric field for breakdown voltage improvement. IEEE Trans Device Mater Reliab 9(3):449–453

    Article  Google Scholar 

  23. Silvaco I (2010) ATLAS user’s manual device simulation software, St. Clara, CA

  24. Shockley W, Read WT Jr (1952) Statistics of the recombinations of holes and electrons. Phys Rev 87(5):835

    Article  CAS  Google Scholar 

  25. Selberherr S (2012) Analysis and simulation of semiconductor devices. Springer Science & Business Media, Berlin

  26. Zhang B, Wang W, Chen W, Li Z, Li Z (2009) High-voltage LDMOS with charge-balanced surface low on-resistance path layer. IEEE Electron Device Lett 30(8):849–851

    Article  CAS  Google Scholar 

  27. Chen W, Zhang B, Li Z (2006) SJ-LDMOS with high breakdown voltage and ultra-low on-resistance. Electron Lett 42(22):1314–1315

    Article  Google Scholar 

  28. Rub M et al (2006) A 600V 8.7 Ohmmm 2 lateral superjunction transistor. In: 2006 IEEE International Symposium on Power Semiconductor Devices and IC’s, pp 1–4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Abbasi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokouhi Shoormasti, A., Abbasi, A. & Orouji, A.A. Improvement the Breakdown Voltage and the On-resistance in the LDMOSFET: Double Buried Metal Layers Structure. Silicon 13, 2157–2164 (2021). https://doi.org/10.1007/s12633-020-00684-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00684-y

Keywords

Navigation