Log in

Introducing oxygen vacancies in TiO2 lattice through trivalent iron to enhance the photocatalytic removal of indoor NO

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The synthesis of oxygen vacancies (OVs)-modified TiO2 under mild conditions is attractive. In this work, OVs were easily introduced in TiO2 lattice during the hydrothermal do** process of trivalent iron ions. Theoretical calculations based on a novel charge-compensation structure model were employed with experimental methods to reveal the intrinsic photocatalytic mechanism of Fe-doped TiO2 (Fe–TiO2). The OVs formation energy in Fe–TiO2 (1.12 eV) was only 23.6% of that in TiO2 (4.74 eV), explaining why Fe3+ do** could introduce OVs in the TiO2 lattice. The calculation results also indicated that impurity states introduced by Fe3+ and OVs enhanced the light absorption activity of TiO2. Additionally, charge carrier transport was investigated through the carrier lifetime and relative mass. The carrier lifetime of Fe–TiO2 (4.00, 4.10, and 3.34 ns for 1at%, 2at%, and 3at% do** contents, respectively) was longer than that of undoped TiO2 (3.22 ns), indicating that Fe3+ and OVs could promote charge carrier separation, which can be attributed to the larger relative effective mass of electrons and holes. Herein, Fe–TiO2 has higher photocatalytic indoor NO removal activity compared with other photocatalysts because it has strong light absorption activity and high carrier separation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Cassia, M. Nocioni, N. Correa-Aragunde, and L. Lamattina, Climate change and the impact of greenhouse gasses: CO2 and NO, friends and foes of plant oxidative stress, Front. Plant Sci., 9(2018), art. No. 273.

  2. F.L.M. Ricciardolo, P.J. Sterk, B. Gaston, and G. Folkerts, Nitric oxide in health and disease of the respiratory system, Physiol. Rev., 84(2004), No. 3, p. 731.

    Article  CAS  Google Scholar 

  3. N. Carslaw and D. Shaw, Secondary product creation potential (SPCP): A metric for assessing the potential impact of indoor air pollution on human health, Environ. Sci. Process. Impacts, 21(2019), No. 8, p. 1313.

    Article  CAS  Google Scholar 

  4. J.P. Liu, S. Li, J.F. Zeng, et al., Assessing indoor gas phase oxidation capacity through real-time measurements of HONO and NOx in Guangzhou, China, Environ. Sci. Process. Impacts, 21(2019), No. 8, p. 1393.

    Article  CAS  Google Scholar 

  5. L.P. Han, S.X. Cai, M. Gao, et al., Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects, Chem. Rev., 119(2019), No. 19, p. 10916.

    Article  CAS  Google Scholar 

  6. N. Zhu, W.P. Shan, Z.H. Lian, Y. Zhang, K. Liu, and H. He, A superior Fe–V–Ti catalyst with high activity and SO2 resistance for the selective catalytic reduction of NOx with NH3, J. Hazard. Mater., 382(2020), art. No. 120970.

  7. Z.F. Bai, B.B. Chen, Q. Zhao, C. Shi, and M. Crocker, Positive effects of K+ in hybrid CoMn–K and Pd/Ba/Al2O3 catalysts for NOx storage and reduction, Appl. Catal. B, 249(2019), p. 333.

    Article  CAS  Google Scholar 

  8. X. Bi, G.H. Du, D.F. Sun, et al., Room-temperature synthesis of yellow TiO2 nanoparticles with enhanced photocatalytic properties, Appl. Surf. Sci., 511(2020), art. No. 145617.

  9. M.Z. Guo, J.S. Li, and C.S. Poon, Improved photocatalytic nitrogen oxides removal using recycled glass-nano-TiO2 composites with NaOH pre-treatment, J. Cleaner Prod., 209(2019), p. 1095.

    Article  CAS  Google Scholar 

  10. P. Ribao, J. Corredor, M.J. Rivero, and I. Ortiz, Role of reactive oxygen species on the activity of noble metal-doped TiO2 photocatalysts, J. Hazard. Mater., 372(2019), p. 45.

    Article  CAS  Google Scholar 

  11. S.H. Liu and W.X. Lin, A simple method to prepare g-C3N4–TiO2/waste zeolites as visible-light-responsive photocatalytic coatings for degradation of indoor formaldehyde, J. Hazard. Mater., 368(2019), p. 468.

    Article  CAS  Google Scholar 

  12. H. Chakhtouna, H. Benzeid, N. Zari, A.E.K. Qaiss, and R. Bouhfid, Recent progress on Ag/TiO2 photocatalysts: Photocatalytic and bactericidal behaviors, Environ. Sci. Pollut. Res. Int., 28(2021), No. 33, p. 44638.

    Article  CAS  Google Scholar 

  13. X.B. Chen, L. Liu, P.Y. Yu, and S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 331(2011), No. 6018, p. 746.

    Article  CAS  Google Scholar 

  14. G. Ou, Y.S. Xu, B. Wen, et al., Tuning defects in oxides at room temperature by lithium reduction, Nat. Commun., 9(2018), No. 1, art. No. 1302.

  15. Z. Hu, K.N. Li, X.F. Wu, et al., Dramatic promotion of visible-light photoreactivity of TiO2 hollow microspheres towards NO oxidation by introduction of oxygen vacancy, Appl. Catal. B, 256(2019), art. No. 117860.

  16. J.G. Speight, Lange’s Handbook of Chemistry, 16th ed., McGraw-Hill, New York, 2005.

    Google Scholar 

  17. C.Y. Yang, Z. Wang, T.Q. Lin, et al., Core–shell nanostructured “black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur do**, J. Am. Chem. Soc., 135(2013), No. 47, p. 17831.

    Article  CAS  Google Scholar 

  18. C.Y. Mao, F. Zuo, Y. Hou, X.H. Bu, and P.Y. Feng, In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction, Angew. Chem. Int. Ed., 53(2014), No. 39, p. 10485.

    Article  CAS  Google Scholar 

  19. J.X. Qiu, S. Li, E. Gray, et al., Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries, J. Phys. Chem. C, 118(2014), No. 17, p. 8824.

    Article  CAS  Google Scholar 

  20. Z. Zhao, H.Q. Tan, H.F. Zhao, et al., Reduced TiO2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity, Chem. Commun., 50(2014), No. 21, p. 2755.

    Article  CAS  Google Scholar 

  21. C.H. Fang, T. Bi, X.X. Xu, et al., Oxygen vacancy-enhanced electrocatalytic performances of TiO2 nanosheets toward N2 reduction reaction, Adv. Mater. Interfaces, 6(2019), No. 21, art. No. 1901034.

  22. Y.N. Wu, Y.Y. Fu, L. Zhang, et al., Study of oxygen vacancies on different facets of anatase TiO2, Chin. J. Chem., 37(2019), No. 9, p. 922.

    Article  CAS  Google Scholar 

  23. X. Zhang, L. Luo, R.P. Yun, M. Pu, B. Zhang, and X. **ang, Increasing the activity and selectivity of TiO2-supported Au catalysts for renewable hydrogen generation from ethanol photoreforming by engineering Ti3+ defects, ACS Sustainable Chem. Eng., 7(2019), No. 16, p. 13856.

    Article  CAS  Google Scholar 

  24. B.Y. Tan, X.H. Zhang, Y.J. Li, et al., Anatase TiO2 mesocrystals: Green synthesis, in situ conversion to porous single crystals, and self-do** Ti3+ for enhanced visible light driven photocatalytic removal of NO, Chem. Eur. J., 23(2017), No. 23, p. 5478.

    Article  CAS  Google Scholar 

  25. F. Li, T.H. Han, H.G. Wang, X.M. Zheng, J.M. Wan, and B.K. Ni, Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals, J. Mater. Res., 32(2017), No. 8, p. 1563.

    Article  CAS  Google Scholar 

  26. R.L. Fomekong and B. Saruhan, Synthesis of Co3+ doped TiO2 by co-precipitation route and its gas sensing properties, Front. Mater., 6(2019), art. No. 252.

  27. V.R. Akshay, B. Arun, G. Mandal, and M. Vasundhara, Visible range optical absorption, Urbach energy estimation and paramagnetic response in Cr-doped TiO2 nanocrystals derived by a sol–gel method, Phys. Chem. Chem. Phys., 21(2019), No. 24, p. 12991.

    Article  CAS  Google Scholar 

  28. G. Cheng, X. Liu, X.J. Song, et al., Visible-light-driven deep oxidation of NO over Fe doped TiO2 catalyst: Synergic effect of Fe and oxygen vacancies, Appl. Catal. B, 277(2020), art. No. 119196.

  29. K.R.V. Babu, C.G. Renuka, and H. Nagabhushana, Mixed fuel approach for the fabrication of TiO2:Ce3+ (1–9 mol%) nano-phosphors: Applications towards wLED and latent finger print detection, Ceram. Int., 44(2018), No. 7, p. 7618.

    Article  CAS  Google Scholar 

  30. A. Roldán, M. Boronat, A. Corma, and F. Illas, Theoretical confirmation of the enhanced facility to increase oxygen vacancy concentration in TiO2 by iron do**, J. Phys. Chem. C, 114(2010), No. 14, p. 6511.

    Article  Google Scholar 

  31. X.H. Zheng, Y.L. Li, W.L. You, et al., Construction of Fedoped TiO2−x ultrathin nanosheets with rich oxygen vacancies for highly efficient oxidation of H2S, Chem. Eng. J., 430(2022), art. No. 132917.

  32. T.T. Loan, V.H. Huong, N.T. Huyen, L.V. Quyet, N.A. Bang, and N.N. Long, Anatase to rutile phase transformation of iron-doped titanium dioxide nanoparticles: The role of iron content, Opt. Mater., 111(2021), art. No. 110651.

  33. C.R. Shyniya, K.A. Bhabu, and T.R. Rajasekaran, Enhanced electrochemical behavior of novel acceptor doped titanium dioxide catalysts for photocatalytic applications, J. Mater. Sci., 28(2017), No. 9, p. 6959.

    CAS  Google Scholar 

  34. J.B. Shi, G.Q. Chen, G.M. Zeng, et al., Hydrothermal synthesis of graphene wrapped Fe-doped TiO2 nanospheres with high photocatalysis performance, Ceram. Int., 44(2018), No. 7, p. 7473.

    Article  CAS  Google Scholar 

  35. X.F. Zeng, J.S. Wang, Y.N. Zhao, W.L. Zhang, and M.H. Wang, Construction of TiO2-pillared multilayer graphene nano-composites as efficient photocatalysts for ciprofloxacin degradation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 503.

    Article  CAS  Google Scholar 

  36. T. Ali, P. Tripathi, A. Azam, et al., Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation, Mater. Res. Express, 4(2017), No. 1, art. No. 015022.

  37. J.J. Zheng, Z.W. Wang, J.X. Ma, S.P. Xu, and Z.C. Wu, Development of an electrochemical ceramic membrane filtration system for efficient contaminant removal from waters, Environ. Sci. Technol., 52(2018), No. 7, p. 4117.

    Article  CAS  Google Scholar 

  38. G. Rajender, J. Kumar, and P.K. Giri, Interfacial charge transfer in oxygen deficient TiO2–graphene quantum dot hybrid and its influence on the enhanced visible light photocatalysis, Appl. Catal. B, 224(2018), p. 960.

    Article  CAS  Google Scholar 

  39. F. Xu, W.N. Cao, J.Z. Li, et al., TiO2@NH2-MIL-125(Ti) composite derived from a partial-etching strategy with enhanced carriers’ transfer for the rapid photocatalytic Cr(VI) reduction, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 630.

    Article  CAS  Google Scholar 

  40. X.J. Song, W.J. Jiang, Z.H. Cai, et al., Visible light-driven deep oxidation of NO and its durability over Fe doped BaSnO3: The NO+ intermediates mechanism and the storage capacity of Ba ions, Chem. Eng. J., 444(2022), art. No. 136709.

  41. M. Abdulla-Al-Mamun, Y. Kusumoto, and M.S. Islam, Enhanced photocatalytic cytotoxic activity of Ag@Fe-doped TiO2 nanocomposites against human epithelial carcinoma cells, J. Mater. Chem., 22(2012), No. 12, p. 5460.

    Article  CAS  Google Scholar 

  42. H. Moradi, A. Eshaghi, S.R. Hosseini, and K. Ghani, Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation, Ultrason. Sonochem., 32(2016), p. 314.

    Article  CAS  Google Scholar 

  43. A. Kundu and A. Mondal, Structural, optical, physio-chemical properties and photodegradation study of methylene blue using pure and iron-doped anatase titania nanoparticles under solarlight irradiation, J. Mater. Sci., 30(2019), No. 4, p. 3244.

    CAS  Google Scholar 

  44. H. Guo, C.G. Niu, C. Liang, et al., Highly crystalline porous carbon nitride with electron accumulation capacity: Promoting exciton dissociation and charge carrier generation for photocatalytic molecular oxygen activation, Chem. Eng. J., 409(2021), art. No. 128030.

  45. Q. Su, J. Li, H.Y. Yuan, et al., Visible-light-driven photocatalytic degradation of ofloxacin by g-C3N4/NH2-MIL-88B(Fe) heterostructure: Mechanisms, DFT calculation, degradation pathway and toxicity evolution, Chem. Eng. J., 427(2022), art. No. 131594.

  46. H. Shang, M.Q. Li, H. Li, et al., Oxygen vacancies promoted the selective photocatalytic removal of NO with blue TiO2 via simultaneous molecular oxygen activation and photogenerated hole annihilation, Environ. Sci. Technol., 53(2019), No. 11, p. 6444.

    Article  CAS  Google Scholar 

  47. J.X. Li, H. Yuan, W.J. Zhang, R.J. Zhu, and Z.B. Jiao, Construction of BiVO4/BiOCl@C Z-scheme heterojunction for enhanced photoelectrochemical performance, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 1971.

    Article  CAS  Google Scholar 

  48. J.F. Zheng, X.S. Deng, X. Zhou, et al., Efficient formamidinium–methylammonium lead halide perovskite solar cells using Mg and Er co-modified TiO2 nanorods, J. Mater. Sci., 30(2019), p. 11043.

    CAS  Google Scholar 

  49. Z.Y. Gu, Z.T. Cui, Z.J. Wang, et al., Carbon vacancies and hydroxyls in graphitic carbon nitride: Promoted photocatalytic NO removal activity and mechanism, Appl. Catal. B, 279(2020), art. No. 119376.

  50. M. Yadav, A. Yadav, R. Fernandes, et al., Tungsten-doped TiO2/reduced graphene oxide nano-composite photocatalyst for degradation of phenol: A system to reduce surface and bulk electron-hole recombination, J. Environ. Manage., 203(2017), p. 364.

    Article  CAS  Google Scholar 

  51. J.S. Yuan, Y. Zhang, X.Y. Zhang, L. Zhao, H.L. Shen, and S.G. Zhang, Template-free synthesis of core–Shell Fe3O4@MoS2@mesoporous TiO2 magnetic photocatalyst for wastewater treatment, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 177.

    Article  CAS  Google Scholar 

  52. W.L. Yu, D.F. Xu, and T.Y. Peng, Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: A direct Z-scheme mechanism, J. Mater. Chem. A, 3(2015), No. 39, p. 19936.

    Article  CAS  Google Scholar 

  53. X.J. Ye, Y.H. Chen, C.C. Ling, et al., Chalcogenide photocatalysts for selective oxidation of aromatic alcohols to aldehydes using O2 and visible light: A case study of CdIn2S4, CdS and In2S3, Chem. Eng. J., 348(2018), p. 966.

    Article  CAS  Google Scholar 

  54. H.J. Zhang, L. Liu, and Z. Zhou, First-principles studies on facet-dependent photocatalytic properties of bismuth oxyhalides (BiOXs), RSC Adv., 2(2012), No. 24, p. 9224.

    Article  CAS  Google Scholar 

  55. Z.Y. Gu, Z.T. Cui, Z.J. Wang, et al., Intrinsic carbon-do** induced synthesis of oxygen vacancies-mediated TiO2 nanocrystals: Enhanced photocatalytic NO removal performance and mechanism, J. Catal., 393(2021), p. 179.

    Article  CAS  Google Scholar 

  56. W.J. Wang, X. Wang, Y. Li, et al., Effects of transition metal do** on electronic structure of metastable β-Fe2O3 photocatalyst for solar-to-hydrogen conversion, Phys. Chem. Chem. Phys., 24(2022), No. 11, p. 6958.

    Article  CAS  Google Scholar 

  57. B. Singha and K. Ray, Density functional theory insights on photocatalytic ability of CuO/TiO2 and CuO/ZnO, Mater. Today Proc., 72(2023), p. 451.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the BJAST High-level Innovation Team Program (No. BGS202001), the Bei**g Postdoctoral Research Foundation (No. 2022-ZZ-046), the National Natural and Science Foundation of China (No. 51972026), the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for the Scientific Research (KAKENHI, Nos. 16H06439 and 20H00297), and the Dynamic Alliance for Open Innovations Bridging Human, Environment and Materials, the Cooperative Research Program of “Network Joint Research Center for Materials and Devices.” Peng Sun is grateful for the scholarship granted to a visiting Ph.D. student of the Inter-University Exchange Project by the China Scholarship Council (CSC, No. 201906460113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu Yin, Zhanwu Ning or Wenbin Cao.

Ethics declarations

Shu Yin and Wenbin Cao are editorial board members for this journal and were not involved in the editorial review or the decision to publish this article. The authors declare no competing financial interests.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, P., Han, S., Liu, J. et al. Introducing oxygen vacancies in TiO2 lattice through trivalent iron to enhance the photocatalytic removal of indoor NO. Int J Miner Metall Mater 30, 2025–2035 (2023). https://doi.org/10.1007/s12613-023-2611-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2611-z

Keywords

Navigation