Log in

Microwave absorption and thermal properties of coral-like SiC aerogel composites prepared by water glass as a silicon source

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

As a heat-resistant wave-absorbing material, silicon carbide (SiC) aerogel has become a research hotspot at present. However, the most common silicon sources are organosilanes, which are costly and toxic. In this work, SiC aerogels were successfully prepared by using water glass as the silicon source. Specifically, the microstructure and chemical composition of SiC aerogels were controlled by adjusting the Si to C molar ratio during the sol–gel process, and the effect on SiC aerogel microwave absorption properties was investigated. The SiC aerogels prepared with Si:C molar ratio of 1:1 have an effective electromagnetic wave absorption capacity, with a minimum reflection loss value of −46.30 dB at 12.88 GHz and an effective frequency bandwidth of 4.02 GHz. They also have good physical properties, such as the density of 0.0444 g/cm3, the thermal conductivity of 0.0621 W/(m·K), and the specific surface area of 1099 m2/g. These lightweight composites with microwave-absorbing properties and low thermal conductivity can be used as thermal protection materials for space shuttles and reusable carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kumar, A. Kumar, K. Sampath, et al., Fabrication and erosion studies of C-SiC composite Jet Vanes in solid rocket motor exhaust, J. Eur. Ceram. Soc., 31(2011), No. 13, p. 2425.

    Article  CAS  Google Scholar 

  2. G.B. Sun, B.X. Dong, M.H. Cao, B.Q. Wei, and C.W. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption, Chem. Mater., 23(2011), No. 6, p. 1587.

    Article  CAS  Google Scholar 

  3. W.M. Zhu, L. Wang, R. Zhao, J.W. Ren, G.Z. Lu, and Y.Q. Wang, Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals, Nanoscale, 3(2011), No. 7, p. 2862.

    Article  CAS  Google Scholar 

  4. D. Micheli, A. Vricella, R. Pastore, and M. Marchetti, Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders, Carbon, 77(2014), p. 756.

    Article  CAS  Google Scholar 

  5. A. Ansari and M.J. Akhtar, Co/graphite based light weight microwave absorber for electromagnetic shielding and stealth applications, Mater. Res. Express, 4(2017), No. 1, art. No. 016304.

  6. B. Quan, X.H. Liang, G.B. Ji, et al., Dielectric polarization in electromagnetic wave absorption: Review and perspective, J. Alloys Compd., 728(2017), p. 1065.

    Article  CAS  Google Scholar 

  7. C. Wang, V. Murugadoss, J. Kong, et al., Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding, Carbon, 140(2018), p. 696.

    Article  CAS  Google Scholar 

  8. M. Green and X.B. Chen, Recent progress of nanomaterials for microwave absorption, J. Materiomics, 5(2019), No. 4, p. 503.

    Article  Google Scholar 

  9. B. Zhao, X.Q. Guo, W.Y. Zhao, et al., Yolk-shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties, ACS Appl. Mater. Interfaces, 8(2016), No. 42, p. 28917.

    Article  CAS  Google Scholar 

  10. B. Zhao, J.W. Liu, X.Q. Guo, et al., Hierarchical porous Ni@boehmite/nickel aluminum oxide flakes with enhanced microwave absorption ability, Phys. Chem. Chem. Phys., 19(2017), No. 13, p. 9128.

    Article  CAS  Google Scholar 

  11. B. Zhao, X. Zhang, J.S. Deng, et al., A novel sponge-like 2D Ni/derivative heterostructure to strengthen microwave absorption performance, Phys. Chem. Chem. Phys., 20(2018), No. 45, p. 28623.

    Article  CAS  Google Scholar 

  12. Y. Wang, X. Gao, Y.Q. Fu, et al., Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding, Composites Part B, 169(2019), p. 221.

    Article  CAS  Google Scholar 

  13. L.X. Chen, J. Zhao, L. Wang, et al., In-situ pyrolyzed polymethylsilsesquioxane multi-walled carbon nanotubes derived ceramic nanocomposites for electromagnetic wave absorption, Ceram. Int., 45(2019), No. 9, p. 11756.

    Article  CAS  Google Scholar 

  14. Y. Wang, X. Gao, C.H. Lin, L.Y. Shi, X.H. Li, and G.L. Wu, Metal organic frameworks-derived Fe–Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber, J. Alloys Compd., 785(2019), p. 765.

    Article  CAS  Google Scholar 

  15. H.X. Zhang, B.B. Wang, A.L. Feng, et al., Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers, Composites Part B, 167(2019), p. 690.

    Article  CAS  Google Scholar 

  16. Y. Kong, X.D. Shen, S. Cui, and M.H. Fan, Preparation of monolith SiC aerogel with high surface area and large pore volume and the structural evolution during the preparation, Ceram. Int., 40(2014), No. 6, p. 8265.

    Article  CAS  Google Scholar 

  17. Z.M. An, C.S. Ye, R.B. Zhang, and Q. Qu, Multifunctional C/SiO2/SiC-based aerogels and composites for thermal insulators and electromagnetic interference shielding, J. Sol-Gel Sci. Technol., 89(2019), No. 3, p. 623.

    Article  CAS  Google Scholar 

  18. W. Wang, Y.F. Zhao, W.Q. Yan, S. Cui, X.D. Wu, and H. Suo, Preparation of the novel B4C-SiC composite aerogel with high compressive strength and low thermal conductivity, J. Porous Mater., 28(2021), No. 3, p. 703.

    Article  CAS  Google Scholar 

  19. Y. Jiang, Y. Chen, Y.J. Liu, and G.X. Sui, Lightweight spongy bone-like graphene@SiC aerogel composites for high-performance microwave absorption, Chem. Eng. J., 337(2018), p. 522.

    Article  CAS  Google Scholar 

  20. Y. Kong, Y. Zhong, X.D. Shen, et al., Facile synthesis of resorcinol-formaldehyde/silica composite aerogels and their transformation to monolithic carbon/silica and carbon/silicon carbide composite aerogels, J. Non-Cryst. Solids, 358(2012), No. 23, p. 3150.

    Article  CAS  Google Scholar 

  21. L.Y. Cao, Y.S. Liu, Y.H. Zhang, et al., Thermal conductivity and bending strength of SiC composites reinforced by pitch-based carbon fibers, J. Adv. Ceram., 11(2022), No. 2, p. 247.

    Article  CAS  Google Scholar 

  22. M. Norouzi, D. Elhamifar, and R. Mirbagheri, Phenylene-based periodic mesoporous organosilica supported melamine: An efficient, durable and reusable organocatalyst, Microporous Mesoporous Mater., 278(2019), p. 251.

    Article  CAS  Google Scholar 

  23. L. Lei, Z.B. Fu, Y. Yi, X.L. Huang, H. Tu, and C.Y. Wang, Preparation and characterization of RF aerogel on UV irradiation method, J. Sol-Gel Sci. Technol., 72(2014), No. 3, p. 553.

    Article  CAS  Google Scholar 

  24. Y. Chen, L. Yang, S.H. Xu, et al., Ultralight aerogel based on molecular-modified poly(m-phenylenediamine) crosslinking with polyvinyl alcohol/graphene oxide for flow adsorption, RSC Adv., 9(2019), No. 40, p. 22950.

    Article  CAS  Google Scholar 

  25. Y. Huang, X.Y. Peng, X.D. Liu, C. Chen, and X.P. Han, Development of SiC fiber through heat treatment of silica aerogel by in situ curing, Mater. Lett., 283(2021), art. No. 128797.

  26. M.H. Tai, B.C. Mohan, Z.Y. Yao, and C.H. Wang, Superhydrophobic leached carbon black/poly(vinyl) alcohol aerogel for selective removal of oils and organic compounds from water, Chemosphere, 286(2022), art. No. 131520.

  27. J. Wei, X.T. Li, Y. Wang, B. Chen, M.J. Zhang, and C.M. Qin, Photoluminescence property of inexpensive flexible SiC nanowires membrane by electrospinning and carbothermal reduction, J. Am. Ceram. Soc., 103(2020), No. 11, p. 6187.

    Article  CAS  Google Scholar 

  28. B. Du, D.Y. Zhang, J.J. Qian, et al., Multifunctional carbon nanofiber-SiC nanowire aerogel films with superior microwave absorbing performance, Adv. Compos. Hybrid Mater., 4(2021), No. 4, p. 1281.

    Article  CAS  Google Scholar 

  29. K. Chen, Z.H. Bao, A. Du, et al., Synthesis of resorcinol-formaldehyde/silica composite aerogels and their low-temperature conversion to mesoporous silicon carbide, Microporous Mesoporous Mater., 149(2012), No. 1, p. 16.

    Article  CAS  Google Scholar 

  30. A. Zirakjou and M. Kokabi, SiC/C aerogels from biphenylenebridged polysilsesquioxane/clay mineral nanocomposite aerogels, Ceram. Int., 46(2020), No. 2, p. 2194.

    Article  CAS  Google Scholar 

  31. X.T. Li, X.H. Chen, and H.H. Song, Preparation of silicon carbide nanowires via a rapid heating process, Mater. Sci. Eng. B, 176(2011), No. 1, p. 87.

    Article  CAS  Google Scholar 

  32. C.Y. Li, Z. Xu, H.B. Ouyang, L.Y. Chang, J.F. Huang, and Y.J. Liu, Preparation, adsorption properties and microwave-assisted regeneration of porous C/SiC ceramics with a hierarchical structure, Appl. Compos. Mater., 27(2020), No. 3, p. 131.

    Article  CAS  Google Scholar 

  33. G.Q. An, H.L. Liu, H.Y. Li, Z. Chen, J. Li, and Y.J. Li, SiBCN ceramic aerogel/graphene composites prepared via sol–gel infiltration process and polymer-derived ceramics (PDCs) route, Ceram. Int., 46(2020), No. 6, p. 7001.

    Article  CAS  Google Scholar 

  34. J.Z. Feng, J. Feng, and C.R. Zhang, Shrinkage and pore structure in preparation of carbon aerogels, J. Sol-Gel Sci. Technol., 59(2011), No. 2, p. 371.

    Article  CAS  Google Scholar 

  35. K.J. Lee, Y.G. Kang, Y.H. Kim, S.W. Baek, and H. Hwang, Synthesis of silicon carbide powders from methyl-modified silica aerogels, Appl. Sci., 10(2020), No. 18, art. No. 6161.

  36. L.J. Wang, S.Y. Zhao, and M. Yang, Structural characteristics and thermal conductivity of ambient pressure dried silica aero-gels with one-step solvent exchange/surface modification, Mater. Chem. Phys., 113(2009), No. 1, p. 485.

    Article  CAS  Google Scholar 

  37. W. Zheng, X.B. He, M. Wu, X.H. Qu, R.J. Liu, and D.D. Guan, Graphite addition for SiC formation in diamond/SiC/Si composite preparation, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1166.

    Article  CAS  Google Scholar 

  38. S.N. Zhang, H.Q. Pang, T.H. Fan, Q. Ye, Q.L. Cai, and X. Wu, Thermal insulation performance of SiC-doped silica aerogels under large temperature and air pressure differences, Gels, 8(2022), No. 5, art. No. 320.

  39. X.L. Ye, Z.F. Chen, J.X. Zhang, C. Wu, and J.F. **ang, SiC network reinforced SiO2 aerogel with improved compressive strength and preeminent microwave absorption at elevated temperatures, Ceram. Int., 47(2021), No. 22, p. 31497.

    Article  CAS  Google Scholar 

  40. Z.X. Cai, L. Su, H.J. Wang, et al., Alternating multilayered Si3N4/SiC aerogels for broadband and high-temperature electromagnetic wave absorption up to 1000°C, ACS Appl. Mater. Interfaces, 13(2021), No. 14, p. 16704.

    Article  CAS  Google Scholar 

  41. X.L. Ye, Z.F. Chen, S.F. Ai, et al., Novel three-dimensional SiC/melamine-derived carbon foam-reinforced SiO2 aerogel composite with low dielectric loss and high impedance matching ratio, ACS Sustainable Chem. Eng., 7(2019), No. 2, p. 2774.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Program of Applied Basic Research Program of Shanxi Province, China (No. 202103021223055), the Shanxi Scholarship Council of China, and the Key R&D program of Shanxi Province, China (No. 202102030201006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Miao.

Additional information

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., **a, C., Liu, W. et al. Microwave absorption and thermal properties of coral-like SiC aerogel composites prepared by water glass as a silicon source. Int J Miner Metall Mater 30, 1375–1387 (2023). https://doi.org/10.1007/s12613-023-2605-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2605-x

Keywords

Navigation