Log in

Fluidized magnetization roasting of refractory siderite-containing iron ore via preoxidation–low-temperature reduction

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Magnetization roasting is one of the most effective way of utilizing low-grade refractory iron ore. However, the reduction roasting of siderite (FeCO3) generates weakly magnetic wüstite, thus reducing iron recovery via weak magnetic separation. We systematically studied and proposed the fluidized preoxidation-low-temperature reduction magnetization roasting process for siderite. We found that the maghemite generated during the air oxidation roasting of siderite would be further reduced into wüstite at 500 and 550°C due to the unstable intermediate product magnetite (Fe3O4). Stable magnetite can be obtained through maghemite reduction only at low temperature. The optimal fluidized magnetization roasting parameters included preoxidation at 610°C for 2.5 min, followed by reduction at 450°C for 5 min. For roasted ore, weak magnetic separation yielded an iron ore concentrate grade of 62.0wt% and an iron recovery rate of 88.36%. Compared with that of conventional direct reduction magnetization roasting, the iron recovery rate of weak magnetic separation had greatly improved by 34.33%. The proposed fluidized preoxidation-low-temperature reduction magnetization roasting process can realize the efficient magnetization roasting utilization of low-grade refractory siderite-containing iron ore without wüstite generation and is unlimited by the proportion of siderite and hematite in iron ore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Steel Association, 2022 World Steel in Figures, World Steel Association, 2022.

  2. J.W. Yu, Y.X. Han, Y.J. Li, and P. Gao, Growth behavior of the magnetite phase in the reduction of hematite via a fluidized bed, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1231.

    Article  CAS  Google Scholar 

  3. S.K. Roy, D. Nayak, and S.S. Rath, A review on the enrichment of iron values of low-grade iron ore resources using reduction roasting-magnetic separation, Powder Technol., 367(2020), p. 796.

    Article  CAS  Google Scholar 

  4. Y.J. Li, Q. Zhang, S. Yuan, and H. Yin, High-efficiency extraction of iron from early iron tailings via the suspension roasting-magnetic separation, Powder Technol., 379(2021), p. 466.

    Article  CAS  Google Scholar 

  5. X.R. Zhu, Y.X. Han, Y.S. Sun, P. Gao, and Y.J. Li, Thermal decomposition of siderite ore in different flowing atmospheres: Phase transformation and magnetism, Miner. Process. Extr. Metall. Rev, 44(2023), No.3, p. 201.

    Article  CAS  Google Scholar 

  6. V.P. Ponomar, N.O. Dudchenko, and A.B. Brik, Synthesis of magnetite powder from the mixture consisting of siderite and hematite iron ores, Miner. Eng., 122(2018), p. 277.

    Article  CAS  Google Scholar 

  7. Q. Zhang, Y.S. Sun, Y.X. Han, and Y.J. Li, Pyrolysis behavior of a green and clean reductant for suspension magnetization roasting, J. Clean. Prod., 268(2020), art. No. 122173.

  8. Y.H. Luo, D.Q. Zhu, J. Pan, and X.L. Zhou, Thermal decomposition behaviour and kinetics of **njiang siderite ore, Miner. Process. Extr. Metall., 125(2016), No. 1, p. 17.

    Article  CAS  Google Scholar 

  9. Y.J. Li, G. Yang, R.C. Zhao, Y.X. Han, and S. Yuan, Feature of refractory iron ore containing siderite and its research trends of beneficiation technology, Multipurp. Util. Miner. Resour., 2015, No. 2, p. 12.

  10. C.Q. Hu, Y.F. He, D.F. Liu, et al., Advances in mineral processing technologies related to iron, magnesium, and lithium, Rev. Chem. Eng., 36(2019), No. 1, p. 107.

    Article  Google Scholar 

  11. Z.D. Tang, H.X. **ao, Y.S. Sun, P. Gao, and Y.H. Zhang, Exploration of hydrogen-based suspension magnetization roasting for refractory iron ore towards a carbon-neutral future: A pilot-scale study, Int. J. Hydrogen Energy, 47(2022), No. 33, p. 15074.

    Article  CAS  Google Scholar 

  12. S. Yuan, R.F. Wang, P. Gao, Y.X. Han, and Y.J. Li, Suspension magnetization roasting on waste ferromanganese ore: A semi-industrial test for efficient recycling of value minerals, Powder Technol., 396(2022), p. 80.

    Article  CAS  Google Scholar 

  13. X.L. Zhang, Y.X. Han, Y.S. Sun, and Y.J. Li, Innovative utilization of refractory iron ore via suspension magnetization roasting: A pilot-scale study, Powder Technol., 352(2019), p. 16.

    Article  CAS  Google Scholar 

  14. X.Y. Liu, Y.F. Yu, and W. Chen, Research on flash magnetizing roasting-magnetic separation for Daxigou siderite, Met. Mine, 39(2009), No. 10, p. 84.

    Google Scholar 

  15. Q.S. Zhu and H.Z. Li, Status quo and development prospect of magnetizing roasting via fluidized bed for low grade iron ore, CIESC J., 65(2014), No. 7, p. 2437.

    CAS  Google Scholar 

  16. A.A. Adetoro, H.Y. Sun, S.Y. He, Q.S. Zhu, and H.Z. Li, Effects of low-temperature pre-oxidation on the titanomagnetite ore structure and reduction behaviors in a fluidized bed, Metall. Mater. Trans. B, 49(2018), No. 2, p. 846.

    Article  CAS  Google Scholar 

  17. H.M. Na, J.C. Sun, Z.Y. Qiu, et al., A novel evaluation method for energy efficiency of process industry-A case study of typical iron and steel manufacturing process, Energy, 233(2021), art. No. 121081.

  18. J.W. Yu, Y.F. Li, Y. Lv, Y.X. Han, and P. Gao, Recovery of iron from high-iron red mud using suspension magnetization roasting and magnetic separation, Miner. Eng., 178(2022), art. No. 107394.

  19. Z.D. Tang, Q. Zhang, Y.S. Sun, P. Gao, and Y.X. Han, Pilot-scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H2 followed by magnetic separation, Resour. Conserv. Recycl., 172(2021), art. No. 105680.

  20. S. Yuan, W.T. Zhou, Y.X. Han, and Y.J. Li, Efficient enrichment of iron concentrate from iron tailings via suspension magnetization roasting and magnetic separation, J. Mater. Cycles Waste Manage., 22(2020), No. 4, p. 1152.

    Article  CAS  Google Scholar 

  21. Z.D. Tang, P. Gao, Y.J. Li, et al., Recovery of iron from hazardous tailings using fluidized roasting coupling technology, Powder Technol., 361(2020), p. 591.

    Article  CAS  Google Scholar 

  22. M. Gheisari, M. Mozaffari, M. Acet, and J. Amighian, Preparation and investigation of magnetic properties of wüstite nanoparticles, J. Magn. Magn. Mater., 320(2008), No. 21, p. 2618.

    Article  CAS  Google Scholar 

  23. S. Yuan, H.X. **ao, T.Y. Yu, Y.J. Li, and P. Gao, Enhanced removal of iron minerals from high-iron bauxite with advanced roasting technology for enrichment of aluminum, Powder Technol., 372(2020), p. 1.

    Article  CAS  Google Scholar 

  24. V.P. Ponomar, M.M. Bagmut, E.A. Kalinichenko, and A.B. Brik, Experimental study on oxidation of synthetic and natural magnetites monitored by magnetic measurements, J. Alloys Compd., 848(2020), art. No. 156374.

  25. W. Kim, C.Y. Suh, S.W. Cho, et al., A new method for the identification and quantification of magnetite-maghemite mixture using conventional X-ray diffraction technique, Talanta, 94(2012), p. 348.

    Article  CAS  Google Scholar 

  26. F.J. Gotor, M. Macías, A. Ortega, and J.M. Criado, Comparative study of the kinetics of the thermal decomposition of synthetic and natural siderite samples, Phys. Chem. Min., 27(2000), No. 7, p. 495.

    Article  CAS  Google Scholar 

  27. H. Shokrollahi, A review of the magnetic properties, synthesis methods and applications of maghemite, J. Magn. Magn. Mater., 426(2017), p. 74.

    Article  CAS  Google Scholar 

  28. B. Weiss, J. Sturn, F. Winter, and J.L. Schenk, Empirical reduction diagrams for reduction of iron ores with H2 and CO gas mixtures considering non-stoichiometries of oxide phases, Ironmaking Steelmaking, 36(2009), No. 3, p. 212.

    Article  CAS  Google Scholar 

  29. V.P. Romanov, L.F. Checherskaya, and P.A. Tatsienko, Peculiarities of wustite formed below 570°C, Phys. Status Solidi A, 15(1973), No. 2, p. 721.

    Article  CAS  Google Scholar 

  30. A. Pineau, N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H2, Thermochim. Acta, 447(2006), No. 1, p. 89.

    Article  CAS  Google Scholar 

  31. P.K. Gallagher and S. St J Warne, Thermomagnetometry and thermal decomposition of siderite, Thermochim. Acta, 43(1981), No. 3, p. 253.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (Nos. 51974287 and 21736010) and Innovation Academy for Green Manufacture, Chinese Academy of Sciences (No. IAGM-2019-A11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoyan Sun.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Zou, Z., Zhang, M. et al. Fluidized magnetization roasting of refractory siderite-containing iron ore via preoxidation–low-temperature reduction. Int J Miner Metall Mater 30, 1057–1066 (2023). https://doi.org/10.1007/s12613-022-2576-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2576-3

Keywords

Navigation