Log in

Emerging low-density polyethylene/paraffin wax/aluminum composite as a form-stable phase change thermal interface material

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Thermal interface materials (TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance (TCR). The TCR between the solid-liquid contact surface is much smaller than that of the solid-solid contact surface, but conventional solid-liquid phase change materials are likely to cause serious leakage. Therefore, this work has prepared a new form-stable phase change thermal interface material. Through the melt blending of paraffin wax (PW) and low-density polyethylene (LDPE), the stability is improved and it has an excellent coating effect on PW. The addition of aluminum (Al) powder improves the low thermal conductivity of PW/LDPE, and the addition of 15wt% Al powder improves the thermal conductivity of the internal structure of the matrix by 67%. In addition, the influence of the addition of Al powder on the internal structure, thermal properties, and phase change behavior of the PW/LDPE matrix was systematically studied. The results confirmed that the addition of Al powder improved the thermal conductivity of the material without a significant impact on other properties, and the thermal conductivity increased with the increase of Al addition. Therefore, morphologically stable PW/LDPE/Al is an important development direction for TIMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.H. Wu, C. Xu, C.Q. Ma, Z.B. Liu, H.M. Cheng, and W.C. Ren, Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites, Adv. Mater., 31(2019), No. 19, art. No. 1900199.

    Google Scholar 

  2. J.L. Smoyer and P.M. Norris, Brief historical perspective in thermal management and the shift toward management at the nanoscale, Heat Transfer Eng., 40(2019), No. 3–4, p. 269.

    Article  CAS  Google Scholar 

  3. N. Mehra, L.W. Mu, T. Ji, et al., Thermal transport in polymeric materials and across composite interfaces, Appl. Mater. Today, 12(2018), p. 92.

    Article  Google Scholar 

  4. M.J. Gibbons, M. Marengo, and T. Persoons, A review of heat pipe technology for foldable electronic devices, Appl. Therm. Eng., 194(2021), art. No. 117087.

  5. Y.T. Zheng, J.J. Wei, J.L. Liu, et al., Carbon materials: The burgeoning promise in electronics, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 404.

    Article  Google Scholar 

  6. K.A. Samah, M.R. Sahar, M. Yusop, and M.F. Omar, Phase modification and dielectric properties of a cullet-paper ash-Kaolin clay-based ceramic, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 350.

    Article  CAS  Google Scholar 

  7. N. Guo, W.J. Huo, X.Y. Dong, et al., A review on 3D zinc anodes for zinc ion batteries, Small Methods, 6(2022), No. 9, art. No. 2200597.

    Google Scholar 

  8. J. Hansson, T.M.J. Nilsson, L.L. Ye, and J. Liu, Novel nanostructured thermal interface materials: A review, Int. Mater. Rev., 63(2018), No. 1, p. 22.

    Article  CAS  Google Scholar 

  9. Y.S. Zhao, X.L. Zeng, L.L. Ren, X.N. **a, X.L. Zeng, and J. Zhou, Heat conduction of electrons and phonons in thermal interface materials, Mater. Chem. Front., 5(2021), No. 15, p. 5617.

    Article  CAS  Google Scholar 

  10. P. Zhu, P.P. Wang, P.Z. Shao, et al., Research progress in interface modification and thermal conduction behavior of diamond/metal composites, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 200.

    Article  CAS  Google Scholar 

  11. J.P. Gwinn and R.L. Webb, Performance and testing of thermal interface materials, Microelectron. J., 34(2003), No. 3, p. 215.

    Article  CAS  Google Scholar 

  12. B. Wicklein, A. Kocjan, G. Salazar-Alvarez, et al., Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide, Nat. Nanotechnol., 10(2015), No. 3, p. 277.

    Article  CAS  Google Scholar 

  13. E.B. Moustafa and M.A. Taha, Evaluation of the microstructure, thermal and mechanical properties of Cu/SiC nanocomposites fabricated by mechanical alloying, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 475.

    Article  CAS  Google Scholar 

  14. Z.Q. Liu, Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling, Appl. Therm. Eng., 185(2021), art. No. 116415.

  15. D.Y. Zhang, C.C. Li, N.Z. Lin, B.S. **e, and J. Chen, Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 168.

    Article  CAS  Google Scholar 

  16. M.C.K. Swamy and Satyanarayan, A review of the performance and characterization of conventional and promising thermal interface materials for electronic package applications, J. Electron. Mater., 48(2019), No. 12, p. 7623.

    Article  CAS  Google Scholar 

  17. Y.C. Zhou, S.Q. Wu, Y.H. Long, et al., Recent advances in thermal interface materials, ES Mater. Manuf., 7(2020), p. 4.

    CAS  Google Scholar 

  18. C.P. Feng, Recent advances in polymer-based thermal interface materials for thermal management: A mini-review, Compos. Commun., 22(2020), art. No. 100528.

  19. L.M. Peng, Z. Xu, W.Y. Wang, et al., Leakage-proof and malleable polyethylene wax vitrimer phase change materials for thermal interface management, ACS Appl. Energy Mater., 4(2021), No. 10, p. 11173.

    Article  CAS  Google Scholar 

  20. R.R. Cao, Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites, Energy, 138(2017), p. 157.

    Article  CAS  Google Scholar 

  21. Y. Xu, M.J. Li, Z.J. Zheng, and X.D. Xue, Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment, Appl. Energy, 212(2018), p. 868.

    Article  Google Scholar 

  22. Y.X. Lin, C.Q. Zhu, G. Alva, and G.Y. Fang, Palmitic acid/polyvinyl butyral/expanded graphite composites as form-stable phase change materials for solar thermal energy storage, Appl. Energy, 228(2018), p. 1801.

    Article  CAS  Google Scholar 

  23. J. Yang, Reduced graphene oxide and zirconium carbide co-modified melamine sponge/paraffin wax composites as new form-stable phase change materials for photothermal energy conversion and storage, Appl. Therm. Eng., 163(2019), art. No. 114412.

  24. X.N. Fei, S.J. Liu, B.L. Zhang, and H.B. Zhao, Effect of alkyltriethoxysilane on the performance of sodium silicate-based silica shell phase change microcapsules, Colloids Surf. A, 608(2021), art. No. 125503.

  25. B.Y. Zhang, Z. Zhang, S. Kapar, et al., Microencapsulation of phase change materials with polystyrene/cellulose nanocrystal hybrid shell via Pickering emulsion polymerization, ACS Sustainable Chem. Eng., 7(2019), No. 21, p. 17756.

    Article  CAS  Google Scholar 

  26. A. Serrano, Reducing heat loss through the building envelope by using polyurethane foams containing thermoregulating microcapsules, Appl. Therm. Eng., 103(2016), p. 226.

    Article  CAS  Google Scholar 

  27. Y.F. Geng, L. Pan, Z.Y. Peng, et al., Electrolyte additive engineering for aqueous Zn ion batteries, Energy Storage Mater., 51(2022), p. 733.

    Article  Google Scholar 

  28. W.W. Wang, Y.B. Cai, M.Y. Du, et al., Ultralight and flexible carbon foam-based phase change composites with high latent-heat capacity and photothermal conversion capability, ACS Appl. Mater. Interfaces, 11(2019), No. 35, p. 31997.

    Article  CAS  Google Scholar 

  29. X.C. Wang, G.Y. Li, G. Hong, Q. Guo, and X.T. Zhang, Graphene aerogel templated fabrication of phase change microspheres as thermal buffers in microelectronic devices, ACS Appl. Mater. Interfaces, 9(2017), No. 47, p. 41323.

    Article  CAS  Google Scholar 

  30. X. Chen, P. Cheng, Z.D. Tang, X.L. Xu, H.Y. Gao, and G. Wang, Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion, Adv. Sci., 8(2021), No. 9, art. No. 2001274.

    Google Scholar 

  31. M.M. Rahman, A.O. Oni, E. Gemechu, and A. Kumar, Assessment of energy storage technologies: A review, Energy Convers. Manage., 223(2020), art. No. 113295.

  32. E. Alehosseini and S.M. Jafari, Nanoencapsulation of phase change materials (PCMs) and their applications in various fields for energy storage and management, Adv. Colloid Interface Sci., 283(2020), art. No. 102226.

  33. A. Schweighuber, A. Felgel-Farnholz, T. Bögl, J. Fischer, and W. Buchberger, Investigations on the influence of multiple extrusion on the degradation of polyolefins, Polym. Degrad. Stab., 192(2021), art. No. 109689.

  34. C.M. Geiselhart, W.W. Xue, C. Barner-Kowollik, and H. Mutlu, Degradable redox-responsive polyolefins, Macromolecules, 54(2021), No. 4, p. 1775.

    Article  CAS  Google Scholar 

  35. P. Awasthi and S.S. Banerjee, Fused deposition modeling of thermoplastic elastomeric materials: Challenges and opportunities, Addit. Manuf., 46(2021), art. No. 102177.

  36. Z.X. Peng, K.H. **an, Y. Cui, et al., Thermoplastic elastomer tunes phase structure and promotes stretchability of high-efficiency organic solar cells, Adv. Mater., 33(2021), No. 49, art. No. 2106732.

    Google Scholar 

  37. P. Sobolčiak, M. Mrlik, A. Popelka, et al., Foamed phase change materials based on recycled polyethylene/paraffin wax blends, Polymers, 13(2021), No. 12, art. No. 1987.

    Google Scholar 

  38. B.X. Li, T.X. Liu, L.Y. Hu, Y.F. Wang, and L.N. Gao, Fabrication and properties of microencapsulated paraffin@SiO2 phase change composite for thermal energy storage, ACS Sustainable Chem. Eng., 1(2013), No. 3, p. 374.

    Article  CAS  Google Scholar 

  39. D. Kim, I. Park, J. Seo, H. Han, and W. Jang, Effects of the paraffin wax (PW) content on the thermal and permeation properties of the LDPE/PW composite films, J. Polym. Res., 22(2015), No. 2, p. 1.

    Article  CAS  Google Scholar 

  40. Y. Wang, H. Shi, T.D. **a, T. Zhang, and H.X. Feng, Fabrication and performances of microencapsulated paraffin composites with polymethylmethacrylate shell based on ultraviolet irradiation-initiated, Mater. Chem. Phys., 135(2012), No. 1, p. 181.

    Article  CAS  Google Scholar 

  41. H. Kwon, D. Kim, J. Seo, and H. Han, Enhanced moisture barrier films based on EVOH/exfoliated graphite (EGn) nanocomposite films by solution blending, Macromol. Res., 21(2013), No. 9, p. 987.

    Article  CAS  Google Scholar 

  42. I. Arcan and A. Yemenicioglu, Development of flexible zein-wax composite and zein-fatty acid blend films for controlled release of lysozyme, Food Res. Int., 51(2013), No. 1, p. 208.

    Article  CAS  Google Scholar 

  43. S. Bahrami, M. Mizani, M. Honarvar, and M.A. Noghabi, Low molecular weight paraffin, as phase change material, in physical and micro-structural changes of novel LLDPE/LDPE/paraffin composite pellets and films, Iran. Polym. J., 26(2017), No. 11, p. 885.

    Article  CAS  Google Scholar 

  44. Q.Q. Huang, Thermal management of lithium-ion battery pack through the application of flexible form-stable composite phase change materials, Appl. Therm. Eng., 183(2021), art. No. 116151.

  45. J.A. Molefi, A.S. Luyt, and I. Krupa, Comparison of LDPE, LLDPE and HDPE as matrices for phase change materials based on a soft Fischer-Tropsch paraffin wax, Thermochim. Acta, 500(2010), No. 1–2, p. 88.

    Article  CAS  Google Scholar 

  46. A.S. Luyt and I. Krupa, Thermal behaviour of low and high molecular weight paraffin waxes used for designing phase change materials, Thermochim. Acta, 467(2008), No. 1–2, p. 117.

    Article  CAS  Google Scholar 

  47. C.Q. Liu, Thermal properties of a novel form-stable phase change thermal interface materials olefin block copolymer/paraffin filled with Al2O3, Int. J. Therm. Sci., 152(2020), art. No. 106293.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, China (No. 51874047), the Key Science and Technology Project of Changsha City, China (No. kq2102005), the Special Fund for the Construction of Innovative Province in Hunan Province, China (No. 2020RC3038), and the Changsha City Fund for Distinguished and Innovative Young Scholars, China (No. kq1802007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanchang Li.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wang, W., Zeng, X. et al. Emerging low-density polyethylene/paraffin wax/aluminum composite as a form-stable phase change thermal interface material. Int J Miner Metall Mater 30, 772–781 (2023). https://doi.org/10.1007/s12613-022-2565-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2565-6

Keywords

Navigation